机器学习算法(2)—— 线性回归算法

‘’‘构造数据集’‘’
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]

‘’‘模型训练’‘’

实例化一个估计器

estimator = LinearRegression()

使用fit方法进行训练

estimator.fit(x,y)

查看回归系数值

coef = estimator.coef_
print(“系数是:\n”,coef) # [0.3 0.7]

预测值

prediction = estimator.predict([[100, 80]])
print(“预测值是:\n”,prediction) # [86.]


## 3 损失函数


为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。**损失函数极小化,意味着拟合程度最好,对应的模型参数即为最优参数**


![在这里插入图片描述](https://img-blog.csdnimg.cn/9f0bf9b2572747a89952f9552f00edb6.png)  
 如上图所示,真实结果与我们预测的结果之间存在一定的误差,而这个误差(损失)可以计算出来:


![在这里插入图片描述](https://img-blog.csdnimg.cn/c54e24684bc6479d89e9decc255da8b4.png)



> 
> 注意:
> 
> 
> * yi为第i个训练样本的真实值
> * h(xi)为第i个训练样本特征值组合预测函数
> * 又称**最小二乘法**
> * 损失函数(Loss Function)度量单样本预测的错误程度,损失函数值越小,模型就越好。
> * 代价函数(Cost Function)度量全部样本集的平均误差。
> * 目标函数(Object Function)代价函数和正则化函数,最终要优化的函数。
> 
> 
> 


## 4 优化算法


如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)


线性回归经常使用的两种优化算法


* 正规方程
* 梯度下降法


### 4.1 正规方程


1. 什么是正规方程  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/d8cc791ad1e84f369189fb1de674a129.png)
2. 正规矩阵求解


把损失函数转换成矩阵写法:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/afd7dae4bc0545c2864d35592aa63874.png)



> 
> 其中y是真实值矩阵,X是特征值矩阵,w是权重矩阵
> 
> 
> 


对其求解关于w(**w为自变量**)的最小值,导数为零的位置,即为损失的最小值  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/9564183b3cc049f7ae42989bf3cba37c.png)



> 
> 注意:
> 
> 
> * 式(1)到式(2)推导过程中,X是一个m行n列的矩阵,并不能保证其有逆矩阵,但是**右乘X的转置XT把其变成一个方阵**,**保证其有逆矩阵**。式(5)到式(6)推导过程中,和上类似。(面试官可能让你手推公式)
> 
> 
> 


即正规方程为:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/fb6c61a2fa9948489aa258a59902ca4b.png)


* X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
* 当特征过多过复杂时,求解速度太慢并且得不到结果


### 4.2 梯度下降


1. 梯度下降


梯度下降法的基本思想可以类比为一个下山的过程。


假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,(同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走)。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。


![在这里插入图片描述](https://img-blog.csdnimg.cn/b24b8f08d0b2430680842b4dc9c1b352.png)


梯度是微积分中一个很重要的概念


* ​ 在**单变量**的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的**切线**的斜率。
* ​ 在**多变量**函数中,梯度是一个**向量**,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着**梯度的反方向**(α为负的原因)一直走,就能走到局部的最低点!


2. 梯度下降公式


梯度下降公式(Gradient Descent)  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/f03149b7b4684d7887de843b06c7b03d.png)  
 **注意:**  
 α在梯度下降算法中被称作为**学习率**或者**步长**,意味着我们可以通过α来控制每一步走的距离,α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点。


所以有了梯度下降这样一个优化算法,回归就有了"**自动学习**"的能力


3. 梯度下降举例


(1) 单变量函数的梯度下降


我们假设有一个单变量的函数 :J(θ) = θ²  
 函数的微分:J’(θ) = 2θ  
 初始化,起点为: θº = 1  
 学习率:α = 0.4  
 我们开始进行梯度下降的迭代计算过程:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/d192fca01a604eaf879caadcaeadd255.png)


如下图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底


![在这里插入图片描述](https://img-blog.csdnimg.cn/60b69c8fa4204cad82fa2c8a596e3a14.png)  
 (2)多变量函数的梯度下降


我们假设有一个目标函数 ::J(θ) = θ₁² + θ₂²  
 现在要通过梯度下降法计算这个函数的最小值。我们通过观察就能发现最小值其实就是 (0,0)点。但是接下 来,我们会从梯度下降算法开始一步步计算到这个最小值! 我们假设初始的起点为: θº = (1, 3)  
 初始的学习率为:α = 0.1  
 函数的梯度为:▽:J(θ) =< 2θ₁ ,2θ₂>


进行多次迭代:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/496bc05d2fb24ac1985fb709af8b3193.png)  
 我们发现,已经基本靠近函数的最小值点  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/9a462f70be024cfaab49c48d668635b0.png)  
 4. 梯度下降算法


常见的梯度下降算法有:


* 全梯度下降算法(Full gradient descent),
* 随机梯度下降算法(Stochastic gradient descent),
* 随机平均梯度下降算法(Stochastic average gradient descent)
* 小批量梯度下降算法(Mini-batch gradient descent),


它们都是为了正确地调节权重向量,通过为每个权重计算一个梯度,从而更新权值,使目标函数尽可能最小化。其差别在于样本的使用方式不同。


(1)全梯度下降算法(FG)


![在这里插入图片描述](https://img-blog.csdnimg.cn/3527cb6cc42d40d9bd9fd0872578c25a.png)  
 (2)随机梯度下降算法(SG)


![在这里插入图片描述](https://img-blog.csdnimg.cn/3a2ce8a361574d0491730a24ace0bb62.png)  
 (3)小批量梯度下降算法(mini-bantch)


![在这里插入图片描述](https://img-blog.csdnimg.cn/90682bd4549e4fa59df74fd61df50d2a.png)  
 (4)随机平均梯度下降算法(SAG)  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/34a316b1b16b46b584e8917a9725de3d.png)  
 (5)算法比较


以下6幅图反映了模型优化过程中四种梯度算法的性能差异。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/c9e38647fdd14295953262458a711741.png)


![在这里插入图片描述](https://img-blog.csdnimg.cn/d699f4ae55aa4460a12d4337cef3de6f.png)  
 结论:


* FG方法由于它每轮更新都要使用全体数据集,故花费的时间成本最多,内存存储最大。
* SAG在训练初期表现不佳,优化速度较慢。这是因为我们常将初始梯度设为0,而SAG每轮梯度更新都结合了上一轮梯度值。
* 综合考虑迭代次数和运行时间,SG表现性能都很好,能在训练初期快速摆脱初始梯度值,快速将平均损失函数降到很低。但要注意,在使用SG方法时要慎重选择步长,否则容易错过最优解。
* mini-batch结合了SG的“胆大”和FG的“心细”,从6幅图像来看,它的表现也正好居于SG和FG二者之间。在目前的机器学习领域,mini-batch是使用最多的梯度下降算法,正是因为它避开了FG运算效率低成本大和SG收敛效果不稳定的缺点。


### 4.3 优化方法比较


![在这里插入图片描述](https://img-blog.csdnimg.cn/046da5459b7b49e499911a7092c7813f.png)


1. 梯度下降要设置α并不保证一次能获得最优的α,正规方程不用考虑α。
2. 梯度下降要迭代多次,正规方程不用。(所以,遇到比较简单的情况,可用正规方程)
3. 梯度下降最后总能得到一个最优结果,正规方程不一定。因为**正规方程要求X的转置乘X的结果可逆**。
4. 当特征数量很多的时候,正规方程计算不方便,不如梯度下降。


算法选择依据:


* 小规模数据:
	+ 正规方程:LinearRegression(不能解决拟合问题)
	+ 岭回归
* 大规模数据:
	+ 梯度下降法: SGDRegressor


### 4.4 线性回归api再介绍


数据集介绍


![在这里插入图片描述](https://img-blog.csdnimg.cn/752df80f18fe4a8dad56af74eb78c3af.png)


**(1)线性回归:正规方程**


`sklearn.linear_model.LinearRegression(fit_intercept=True)`


* `fit_intercept`:是否计算偏置
* `LinearRegression.coef_`:回归系数(y=kx+b中的 k)
* `LinearRegression.intercept_`:偏置(y=kx+b中的 b)


**回归模型评估**


![在这里插入图片描述](https://img-blog.csdnimg.cn/f6074b15316a4e46a9338462678c0e39.png)



from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

‘’‘获取数据集’‘’
data = load_boston()

‘’‘划分数据集’‘’
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)

‘’‘特征工程:数据标准化’‘’
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)

‘’‘机器学习:线性回归(正规方程)’‘’
estimator = LinearRegression()
estimator.fit(x_train, y_train)

‘’‘模型评估’‘’
y_predict = estimator.predict(x_test)
print(“预测值为:”, y_predict)
print(“系数值为:”, estimator.coef_)
print(“偏置值为:”, estimator.intercept_)
error = mean_squared_error(y_test, y_predict)
print(“均方误差为:”, error)


**(2)线性回归:梯度下降法**


SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。


`sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)`


参数:


* `loss`:损失类型
	+ `loss=”squared_loss”`: 普通最小二乘法
* `fit_intercept`:是否计算偏置
* `learning_rate` : 学习率填充, string类型,optional
	+ `'constant'`: eta = eta0 对于一个常数值的学习率来说,可以使用learning\_rate=’constant’ ,并使用eta0来指定学习率。
	+ `'optimal'`: eta = 1.0 / (alpha \* (t + t0)) [default]
	+ `'invscaling'`: eta = eta0 / pow(t, power\_t)


属性:


* `SGDRegressor.coef_`:回归系数
* `SGDRegressor.intercept_`:偏置



from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

‘’‘获取数据集’‘’
data = load_boston()

‘’‘划分数据集’‘’
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)

‘’‘特征工程:数据标准化’‘’
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)

‘’‘机器学习-线性回归(特征方程)’‘’
estimator = SGDRegressor(max_iter=1000)
estimator.fit(x_train, y_train)

‘’‘模型评估’‘’
y_predict = estimator.predict(x_test)
print(“预测值为:\n”, y_predict)
print(“模型中的系数为:\n”, estimator.coef_)
print(“模型中的偏置为:\n”, estimator.intercept_)

‘’‘评价’‘’
error = mean_squared_error(y_test, y_predict)
print(“均方误差为:\n”, error)


## 5 欠拟合与过拟合


![在这里插入图片描述](https://img-blog.csdnimg.cn/475d54eb68084621afc045e89a7fabac.png)


### 5.1 欠拟合


**概念**:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)


**原因**:学习到数据的特征过少


**解决办法**:


* 添加其他特征项
* 添加多项式特征


### 5.2 过拟合


**概念**:一个假设在训练数据上能够获得更好的拟合, 但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)


**原因**:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点




![img](https://img-blog.csdnimg.cn/img_convert/f55774143da543c50bb862a62b816f8e.png)
![img](https://img-blog.csdnimg.cn/img_convert/640a6f93bd63df73df0e2fccf90c0967.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

假设出现了过拟合的现象。(模型过于复杂)


**原因**:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点




[外链图片转存中...(img-Jpd0YCGj-1714201872674)]
[外链图片转存中...(img-xtrDEbH9-1714201872675)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值