四、开关电容滤波器
开关电容电路由受时钟脉冲信号控制的模拟开关、电容器和运算放大电路三部分组成。这种电路的特性与电容器的精度无关,而仅与各电容器电容量之比的准确性有关。在集成电路中,可以通过均匀地控制硅片上氧化层的介电常数及其厚度,使电容量之比主要取决于每个电容电极的面积,从而获得准确性很高的电容比。自八十年代以来,开关电容电路广泛地应用于滤波器、振荡器、平衡调制器和自适应均衡器等各种模拟信号处理电路之中。由于开关电容电路应用 MOS 工艺,故尺寸小,功耗低,工艺过程较简单,且易于制成大规模集成电路。
1、基本开关电容单元
图7.3.26所示为基本开关电容单元电路,两相时钟脉冲 ϕ \phi ϕ 和 ϕ ‾ \overline\phi ϕ 互补,即 ϕ \phi ϕ 为高电平时 ϕ ‾ \overline\phi ϕ 为低电平, ϕ \phi ϕ 为低电平时 ϕ ‾ \overline\phi ϕ 为高电平;它们分别控制电子开关 S 1 S_1 S1 和 S 2 S_2 S2,因此两个开关不可能同时闭合或断开。当 S 1 S_1 S1 闭合时, S 2 S_2 S2 必然断开, u 1 u_1 u1 对 C C C 充电,充电电荷 Q 1 = C u 1 Q_1=Cu_1 Q1=Cu1;而 S 1 S_1 S1 断开时, S 2 S_2 S2 必然闭合, C C C 放电,放电电荷 Q 2 = C u 2 Q_2=Cu_2 Q2=Cu2。设开关的周期为 T c T_c Tc,节点从左到右传输的总电荷为 Δ Q = C Δ u = C ( u 1 − u 2 ) \Delta Q=C\Delta u=C(u_1-u_2) ΔQ=CΔu=C(u1−u2)等效电流 i = Δ Q T c = C T c ( u 1 − u 2 ) i=\frac{\Delta Q}{T_c}=\frac{C}{T_c}(u_1-u_2) i=TcΔQ=TcC(u1−u2)如果时钟脉冲的频率 f c f_c fc 足够高,以至于可以认为在一个时钟周期内两个端口的电压基本不变,则基本开关电容单元就可以等效为电阻,其阻值为 R = u 1 − u 2 i = T c C R=\frac{u_1-u_2}{i}=\frac{T_c}{C} R=iu1−u2=CTc若 C = 1 pF C=1\,\textrm{pF} C=1pF, f c = 100 kHz f_c=100\,\textrm{kHz} fc=100kHz,则等效电阻 R R R 等于 10 MΩ 10\,\textrm{MΩ} 10MΩ。利用 MOS 工艺,电容只需硅片面积 0.01 mm 2 0.01\,\textrm{mm}^2 0.01mm2,所占面积极小,所以解决了集成运放不能直接制作大电阻的问题。
2、开关电容滤波电路
图7.3.27(a)所示为开关电容低通滤波器,图(b)所示为它的原型电路。电路正常工作的条件是
ϕ
\phi
ϕ 和
ϕ
‾
\overline\phi
ϕ 的频率
f
c
f_c
fc 远大于输入电压
U
˙
i
\dot U_i
U˙i 的频率。因而开关电容单元可等效成电阻
R
R
R,且
R
=
T
c
/
C
1
R=T_c/C_1
R=Tc/C1。电路的通带截止频率
f
p
f_p
fp 决定于时间常数
τ
=
R
C
2
=
C
2
C
1
T
c
\tau=RC_2=\frac{C_2}{C_1}T_c
τ=RC2=C1C2Tc
f
p
=
1
2
π
τ
=
C
1
C
2
⋅
f
c
(
7.3.47
)
f_p=\frac{1}{2π\tau}=\frac{C_1}{C_2}\cdot f_c\kern 35pt(7.3.47)
fp=2πτ1=C2C1⋅fc(7.3.47)由于
f
c
f_c
fc 是时钟脉冲,频率相当稳定;而且
C
1
/
C
2
C_1/C_2
C1/C2 是两个电容的电容量之比,在集成电路制作时易于作到准确和稳定,所以开关电容电路容易实现稳定准确的时间常数,从而使滤波器的截止频率稳定。实际电路常常在图7.3.27(a)所示电路的后面加电压跟随器或同相比例运算电路,如图7.3.28所示。
五、状态变量型有源滤波器
将比例、积分、求和等基本运算电路组合在一起,并能够对所构成的运算电路自由设置传递函数,实现各种滤波功能,称这种电路为状态变量型有源滤波电路。这里以二阶为例讲述状态变量型有源滤波器的传递函数的编程、电路的组成和集成电路的特点。
1、二阶有源滤波电路的传递函数
二阶有源滤波电路的传递函数为
A
u
(
s
)
=
a
0
+
a
1
s
+
a
2
s
2
b
0
+
b
1
s
+
b
2
s
2
(
7.3.48
)
A_u(s)=\frac{a_0+a_1s+a_2s^2}{b_0+b_1s+b_2s^2}\kern 40pt(7.3.48)
Au(s)=b0+b1s+b2s2a0+a1s+a2s2(7.3.48)根据低通、高通、带通和带阻滤波电路传递函数的表达式(7.3.14)、(7.3.25)、(7.3.34)、(7.3.40),合理选择
a
0
a_0
a0、
a
1
a_1
a1、
a
2
a_2
a2 和
b
0
b_0
b0、
b
1
b_1
b1、
b
2
b_2
b2 的数值(称为编程),即可实现任意传递函数。
当
a
1
=
a
2
=
0
a_1=a_2=0
a1=a2=0 时,式(7.3.48)变为
A
u
(
s
)
=
a
0
b
0
+
b
1
s
+
b
2
s
2
(
7.3.49
)
A_u(s)=\frac{a_0}{b_0+b_1s+b_2s^2}\kern 44pt(7.3.49)
Au(s)=b0+b1s+b2s2a0(7.3.49)表明电路实现二阶低通滤波。
当
a
0
=
a
1
=
0
a_0=a_1=0
a0=a1=0 时,式(7.3.48)变为
A
u
(
s
)
=
a
2
s
2
b
0
+
b
1
s
+
b
2
s
2
(
7.3.50
)
A_u(s)=\frac{a_2s^2}{b_0+b_1s+b_2s^2}\kern 44pt(7.3.50)
Au(s)=b0+b1s+b2s2a2s2(7.3.50)表明电路实现二阶高通滤波。
当
a
0
=
a
2
=
0
a_0=a_2=0
a0=a2=0 时,式(7.3.48)变为
A
u
(
s
)
=
a
1
s
b
0
+
b
1
s
+
b
2
s
2
(
7.3.51
)
A_u(s)=\frac{a_1s}{b_0+b_1s+b_2s^2}\kern 44pt(7.3.51)
Au(s)=b0+b1s+b2s2a1s(7.3.51)表明电路实现二阶带通滤波。
当
a
1
=
0
a_1=0
a1=0 时,式(7.3.48)变为
A
u
(
s
)
=
a
0
+
a
2
s
2
b
0
+
b
1
s
+
b
2
s
2
(
7.3.52
)
A_u(s)=\frac{a_0+a_2s^2}{b_0+b_1s+b_2s^2}\kern 44pt(7.3.52)
Au(s)=b0+b1s+b2s2a0+a2s2(7.3.52)表明电路实现二阶带阻滤波。
由以上分析可知,如果能够根据式(7.3.48)组成电路,并能方便地改变电路参数,就能实现各种滤波功能。改变
a
0
a_0
a0、
a
1
a_1
a1、
a
2
a_2
a2 和
b
0
b_0
b0、
b
1
b_1
b1、
b
2
b_2
b2 的数值,不但能够改变滤波的类型,而且可以获得不同的通带放大倍数和通带截止频率。
2、状态变量型有源滤波电路的组成
根据式(7.3.48),利用基本运算电路可以构造出二阶有源滤波电路,如图7.3.29所示。图中箭头表示信号的传递方向;每个方框表示一个基本运算电路,有比例、积分和求和三种运算电路,方框的输出标注了运算关系。
输入电压所接求和运算电路的输出,即
P
\textrm P
P 点的表达式为
U
p
(
s
)
=
b
2
x
=
U
i
(
s
)
−
b
1
x
s
−
b
0
x
s
2
U_p(s)=b_2x=U_i(s)-\frac{b_1x}{s}-\frac{b_0x}{s^2}
Up(s)=b2x=Ui(s)−sb1x−s2b0x经整理,可得
U
i
(
s
)
=
(
b
0
s
2
+
b
1
s
+
b
2
)
x
U_i(s)=\big(\frac{b_0}{s^2}+\frac{b_1}{s}+b_2\big)x
Ui(s)=(s2b0+sb1+b2)x输出电压的表达式
U
o
(
s
)
=
(
a
0
s
2
+
a
1
s
+
a
2
)
x
U_o(s)=\big(\frac{a_0}{s^2}+\frac{a_1}{s}+a_2\big)x
Uo(s)=(s2a0+sa1+a2)x所以,传递函数
A
u
(
s
)
=
U
o
(
s
)
U
i
(
s
)
=
a
0
+
a
1
s
+
a
2
s
2
b
0
+
b
1
s
+
b
2
s
2
A_u(s)=\frac{U_o(s)}{U_i(s)}=\frac{a_0+a_1s+a_2s^2}{b_0+b_1s+b_2s^2}
Au(s)=Ui(s)Uo(s)=b0+b1s+b2s2a0+a1s+a2s2与式(7.3.48)相同。改变求和运算电路
Ⅱ
Ⅱ
Ⅱ 的输入,就可改变
A
u
(
s
)
A_u(s)
Au(s),从而得到不同类型的滤波电路。用实际电路取代方框图时,可以适当简化。合理选择积分运算电路的
R
R
R 和
C
C
C,可以不需比例运算电路,直接获得合适的
b
0
b_0
b0 和
b
1
b_1
b1。利用二阶电路的构思方法,可以实现高阶滤波电路。
3、集成状态变量型滤波电路
集成状态变量型滤波电路由若干基本运算电路组合而成,仅需外接几个电阻,就可得到低通、高通、带通和带阻滤波电路,因而均为多功能电路。型号为 AF100 的集成电路是二阶集成状态变量型滤波电路,它利用积分运算电路的频率特性来实现滤波作用,内部电路如图7.3.30所示。
从对反相输入低通滤波器的分析可知,积分运算电路具有低通特性。但当频率趋近于零时其电压放大倍数的数值将趋于无穷大,故在电容
C
C
C 上并联电阻
R
2
R_2
R2,如图7.3.11所示,以确定通带放大倍数。同理,在图7.3.30所示电路中,也是利用电阻网络引入级间负反馈来限制通带放大倍数的。当
U
o
1
(
s
)
U_{o1}(s)
Uo1(s) 接
U
i
2
(
s
)
U_{i2}(s)
Ui2(s) 时,通过电阻
R
1
R_1
R1 引入负反馈;当
U
o
1
(
s
)
U_{o1}(s)
Uo1(s) 接
U
i
2
(
s
)
U_{i2}(s)
Ui2(s),且
U
o
2
(
s
)
U_{o2}(s)
Uo2(s) 接
U
i
3
(
s
)
U_{i3}(s)
Ui3(s) 时,通过电阻
R
2
R_2
R2 引入负反馈。
AF100 的典型接法之一如图7.3.31所示,凡打 “ * ” 的均为外接电阻。四个集成运放的输出实现四种滤波功能。以集成运放作为放大电路,以一种运算电路作为其反馈通路,便可实现该种运算的逆运算,利用这一道理,可以较容易地理解图7.3.31所示电路的组成及其工作原理。例如,若反馈通路是低通滤波电路,则整个电路实现高通滤波;若反馈通路是高通滤波电路,则整个电路实现低通滤波。在参数选择得当时,若高通滤波电路串联一个低通滤波电路,则整个电路实现带通滤波;若高通滤波电路的输出与低通滤波电路的输出接求和运算电路,则整个电路实现带阻滤波;根据式(7.3.51),若带通滤波电路串联一个积分电路,则必然消去带通滤波电路传递函数中分子的
s
s
s,故整个电路实现低通滤波。
根据上述原则可知,在
U
i
(
s
)
U_i(s)
Ui(s) 作用下,若以
U
o
1
(
s
)
U_{o1}(s)
Uo1(s) 为输出,则因其反馈通路为串接的两个积分运算电路,即二阶低通滤波电路,故实现的是二阶高通滤波。若以
U
o
2
(
s
)
U_{o2}(s)
Uo2(s) 为输出,则因高通滤波的输出
U
o
1
(
s
)
U_{o1}(s)
Uo1(s) 又经低通滤波,故实现带通滤波。若以
U
o
3
(
s
)
U_{o3}(s)
Uo3(s) 为输出,则因带通滤波的输出
U
o
2
(
s
)
U_{o2}(s)
Uo2(s) 又经积分电路,故实现低通滤波。若以
U
o
4
(
s
)
U_{o4}(s)
Uo4(s) 为输出,则因高通滤波的输出
U
o
1
(
s
)
U_{o1}(s)
Uo1(s) 和低通滤波的输出
U
o
3
(
s
)
U_{o3}(s)
Uo3(s) 经求和运算,故必然实现带阻滤波。因此,整个电路从不同的输出端得到四种不同的滤波功能。电路具体的分析计算如下。
A
1
A_1
A1 同相输入端(这里
R
1
R_1
R1 的阻值应该为
10
k
Ω
10\,\textrm kΩ
10kΩ)
U
p
(
s
)
=
0.1
U
o
2
(
s
)
U_p(s)=0.1U_{o2}(s)
Up(s)=0.1Uo2(s)根据叠加原理,以
U
i
(
s
)
U_i(s)
Ui(s)、
U
o
2
(
s
)
U_{o2}(s)
Uo2(s) 和
U
o
3
(
s
)
U_{o3}(s)
Uo3(s) 为输入,第一级求和电路的输出
U
o
1
(
s
)
=
−
U
i
(
s
)
+
0.2
U
o
2
(
s
)
−
0.1
U
o
3
(
s
)
U_{o1}(s)=-U_i(s)+0.2U_{o2}(s)-0.1U_{o3}(s)
Uo1(s)=−Ui(s)+0.2Uo2(s)−0.1Uo3(s)即
U
i
(
s
)
=
−
U
o
1
(
s
)
+
0.2
U
o
2
(
s
)
−
0.1
U
o
3
(
s
)
(
7.3.53
)
U_i(s)=-U_{o1}(s)+0.2U_{o2}(s)-0.1U_{o3}(s)\kern 25pt(7.3.53)
Ui(s)=−Uo1(s)+0.2Uo2(s)−0.1Uo3(s)(7.3.53)若
R
6
R_6
R6、
R
7
R_7
R7 用
R
R
R 取代,
C
1
C_1
C1、
C
2
C_2
C2 用
C
C
C 取代,则
U
o
1
(
s
)
U_{o1}(s)
Uo1(s)、
U
o
2
(
s
)
U_{o2}(s)
Uo2(s) 和
U
o
3
(
s
)
U_{o3}(s)
Uo3(s) 之间的关系为
U
o
2
(
s
)
=
−
U
o
1
(
s
)
s
R
C
(
7.3.54
)
U_{o2}(s)=-\frac{U_{o1}(s)}{sRC}\kern 85pt(7.3.54)
Uo2(s)=−sRCUo1(s)(7.3.54)
U
o
3
(
s
)
=
−
U
o
2
(
s
)
s
R
C
=
U
o
1
(
s
)
(
s
R
C
)
2
(
7.3.55
)
U_{o3}(s)=-\frac{U_{o2}(s)}{sRC}=\frac{U_{o1}(s)}{(sRC)^2}\kern 40pt(7.3.55)
Uo3(s)=−sRCUo2(s)=(sRC)2Uo1(s)(7.3.55)
U
o
1
(
s
)
=
−
s
R
C
U
o
2
(
s
)
=
(
s
R
C
)
2
U
o
3
(
s
)
(
7.3.56
)
U_{o1}(s)=-sRCU_{o2}(s)=(sRC)^2U_{o3}(s)\kern 20pt(7.3.56)
Uo1(s)=−sRCUo2(s)=(sRC)2Uo3(s)(7.3.56)将式(7.3.54)、(7.3.55)、(7.3.56)代入式(7.3.53),可以分别求出
U
o
1
(
s
)
U_{o1}(s)
Uo1(s)、
U
o
2
(
s
)
U_{o2}(s)
Uo2(s)、
U
o
3
(
s
)
U_{o3}(s)
Uo3(s) 和
U
i
(
s
)
U_i(s)
Ui(s) 之间的传递函数
A
u
1
(
s
)
=
U
o
1
(
s
)
U
i
(
s
)
=
−
10
(
s
R
C
)
2
1
+
2
s
R
C
+
10
(
s
R
C
)
2
(
7.3.57
)
A_{u1}(s)=\frac{U_{o1}(s)}{U_i(s)}=-\frac{10(sRC)^2}{1+2sRC+10(sRC)^2}\kern 10pt(7.3.57)
Au1(s)=Ui(s)Uo1(s)=−1+2sRC+10(sRC)210(sRC)2(7.3.57)
A
u
2
(
s
)
=
U
o
2
(
s
)
U
i
(
s
)
=
10
s
R
C
1
+
2
s
R
C
+
10
(
s
R
C
)
2
(
7.3.58
)
A_{u2}(s)=\frac{U_{o2}(s)}{U_i(s)}=\frac{10sRC}{1+2sRC+10(sRC)^2}\kern 17pt(7.3.58)
Au2(s)=Ui(s)Uo2(s)=1+2sRC+10(sRC)210sRC(7.3.58)
A
u
3
(
s
)
=
U
o
3
(
s
)
U
i
(
s
)
=
−
10
1
+
2
s
R
C
+
10
(
s
R
C
)
2
(
7.3.59
)
A_{u3}(s)=\frac{U_{o3}(s)}{U_i(s)}=-\frac{10}{1+2sRC+10(sRC)^2}\kern 10pt(7.3.59)
Au3(s)=Ui(s)Uo3(s)=−1+2sRC+10(sRC)210(7.3.59)因为
U
o
4
(
s
)
=
−
[
A
u
1
(
s
)
+
A
u
3
(
s
)
]
U
i
(
s
)
U_{o4}(s)=-[A_{u1}(s)+A_{u3}(s)]U_i(s)
Uo4(s)=−[Au1(s)+Au3(s)]Ui(s),所以
A
u
4
(
s
)
=
U
o
4
(
s
)
U
i
(
s
)
=
−
10
+
10
(
s
R
C
)
2
1
+
2
s
R
C
+
10
(
s
R
C
)
2
(
7.3.60
)
A_{u4}(s)=\frac{U_{o4}(s)}{U_i(s)}=-\frac{10+10(sRC)^2}{1+2sRC+10(sRC)^2}\kern 10pt(7.3.60)
Au4(s)=Ui(s)Uo4(s)=−1+2sRC+10(sRC)210+10(sRC)2(7.3.60)将式(7.3.57)、(7.3.58)、(7.3.59)、(7.3.60)与式(7.3.49)、(7.3.50)、(7.3.51)、(7.3.52)比较可知,
A
u
1
(
s
)
A_{u1}(s)
Au1(s)、
A
u
2
(
s
)
A_{u2}(s)
Au2(s)、
A
u
3
(
s
)
A_{u3}(s)
Au3(s) 和
A
u
4
(
s
)
A_{u4}(s)
Au4(s) 分别为高通、带通、低通和带阻滤波电路的传递函数,与定性分析的结果相同。