《科学哲学》读书笔记

这几天看了萨米尔奥卡沙编著的《科学哲学》后收获很多。以前想不通的地方都有了合理的解释,故写下这篇读书笔记。

一.什么是科学?

现在在这个知识大爆炸的年代,伪科学,民科大行其道。那么什么是科学?本书作者认为科学有两大重要特征:探索世界的重要方法(比如实验方法)和科学理论的构建。
很多人尝试对科学进行合理定义。20世纪伟大的科学哲学家卡尔波普尔认为科学理论需要具备可证伪性,这意味着科学理论能够做出一些可以用经验进行检验的特定预测。他还认为不具有可证伪性的都是伪科学。但这个标准过于简单粗暴,故波普尔认为弗洛伊德的精神分析理论和马克思的历史理论都是伪科学。因为他们的理论在任何情况下都能在自身理论框架下得到解释,即不具备可证伪性。这个标准问题在于科学研究过程不是一帆风顺的。在研究过程中,发现观察数据与已有理论出现矛盾的现象比比皆是,不能一下子认为这是伪科学而放弃。
另外一个哲学家维特根斯坦认为没有一系列固定的特征定义科学,但存在一些松散的特征。所以每个人对科学的定义都有着自己的理解,但一般都认为科学包括物理,化学等理学。

二.科学推理

现在主要有两种方式推理形式:演绎和归纳。我以前在做数学题的时候就很好奇为什么归纳会有用?归纳是一种关于某对象已被检验的前提推论到关于该对象的未被检验的结论,即推出的结论是错误的。但归纳是一种有效的检验他人理论是否正确的方法。而演绎就比归纳更加靠谱。它是在前提全部为真的情况下得到一个正确的推论。亦即,如果前提为真,那么结论一定为真。但在现实生活中纯靠演绎推理的情况很少。故很多人开始研究归纳这一技术。休谟就认为归纳是一种与理性无关的动物性习惯,并且认为运用归纳的正确性不可能完全从理性上被证明。他认为运用归纳,就预设“自然齐一性”(我们未检验过的物体将在某些方面与我们已经检验过的同类物体相似)。因为世界是非奇一(即不断变化),自然齐一性就不能满足,纳闷归纳就不一定正确。其他科学家使用概率这一概念反驳这一观点。他们认为归纳虽然不能保证结论正确,但能使结论非常有可能成立。但概率一般有两层含义,要仔细区分:一种是把概率等同于频率(比例);一种表示主观上衡量个人信念强弱的尺度。大部分哲学家倾向用第一种解释归纳的正确性。

三.科学的解释

科学最重要目的之一是解释周围世界发生的一切。那什么是解释呢?美国哲学家亨普尔于20世纪50年代提出了覆盖率模型。其基本思想就是把寻求科学解释转换为寻求解释的原因类问题的解答。具体做法就是把原因类问题作为结论,寻找是其成立的一系列前提。他认为完成这些步骤有三个条件:演绎推理,前提都为真和前提至少包含一个普适定律。所以任意解释都是从一个普适定律推理出来带的。那么这一模型使得解释的本质变成了表明代解释的现象被某个自然普世定律所覆盖。所以称之为覆盖率模型。但这个模型存在一个问题,解释就是对相关现象的预测(因为前提确定了,结论也一定出来了),即使该现象还未被了解。解释和预测结构上就是对称的,即一一对应了。但在现实生活中往往不是这样。例如,旗杆在地面投影了20米长的影子,且太阳在头顶仰角37度,问为什么影子长20米。根据覆盖率模型可得以下解释:阳光直线传播,旗杆长15米,根据三角计算知影长20米。但我们根据影长预测为什么杆长为15米时就有问题了。综上所诉覆盖率模型就有极大缺陷,它忽略了自然界中的不对称现象(联想到数学上的充分条件,必要条件和充要条件就好理解)。当然这个模型还忽略了不相关性,它会把跟结论毫无关系的前提作为科学解释。为了解决以上两个缺陷,其他哲学家转而使用因果律去阐释科学解释。很遗憾的是,因果律并不能覆盖所有解释,比如说,“温度是分子的平均动能”。这句话表现了理论同一,但同时又解释了什么是温度。所以关于科学的解释的理论还需要人们继续发展。

四.实在论与反实在论

实在论主义者和反实在论主义者都认为科学能对世界可“观察”的部分进行正确描述。而对于“不可观察”部分的真假与否,反实在论者并不关心,而实在论者认为这也能被正确描述。那什么是“不可观察”的世界呢?反实在论者认为原子,电子等不能直接肉眼观察的都是不可观察的。他们认为物理学家现在研究的都是虚构的,为了预测可观察的现象所提出的。即反实在论者认为科学理论有助于预测观察数据的工具,而不是描述世界本质的努力。从这可看出反实在论者都是支持不可知论的一群人。相应的实在论者支持可知论。

五.科学变迁和科学革命

库恩于1963年出版的《科学革命的结构》强调了科学史对于科学研究的重要性。在此之前很多科学家割裂了过去对现在的影响去研究科学变迁 和科学革命。其代表就是逻辑实证主义者,他们对自然科学,数学和逻辑高度重视,也因此不认为其同灵光乍现对科学研究的正面作用。而库恩主要思想略显激进,他认为从信奉一个范式到信奉另一个范式是一种不受强迫的转变过程。他认为在这个过程中同行压力和信念起到了关键作用。他还提出了不可通约性和数据的理论负载等理论进一步论证了科学是非理性的,并否认了客观真理的存在。当然这过于激进以至于受到很多人批评。但库恩的学说使得人们从新审视了以前认为理所当然的假设,并重视对于科学的历史演变。

六.特殊科学的哲学

本书主要讲述了关于物理学,生物学和心理学的哲学问题。在物理学领域中,主要讨论了莱布尼兹和牛顿的时空观和绝对空间是否存在。我个人倾向于莱布尼兹的观点(绝对空间不存在),空间是物体间的空间关系构成的集合。对于生物学,则主要讨论了分类标准问题,这没有统一标准。对于心理学领域中,作者讨论了意识是否是模块化的,主要围着的理论是福多尔在《意识的模块性》一书中提出的。但是,目前我觉得大脑中可能一部分是模块化的,比如语言的学习,味觉,嗅觉等等。像推理之类的,应该是通用的。

七.科学和科学批评者

在这章中作者讨论了科学是否是好的。在当今,人人崇尚科学,但科学并不比其他高贵,不能过度神话科学和科学家。并竟以前很多的科学理论,在现在被推翻或者被改进。对待科学的态度,我们要中立,独立自足判断。现在还会讨论科学是否是价值无涉的?有些人认为科学本质是价值无涉的活动,因为科学的任务只是提供关于世界的信息。但有些人认为在科学研究的过程中存在价值判断。科学家研究什么不研究什么,有时候并不取决于自己,而是取决于赞助商等因素。科学有时候会成为像宗教一样控制别人的工具。

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值