本视频 内容:
- cnn 里面 的 可学习参数是啥
- 如何 计算 cnn 里面 的可学习 参数 的个数
- 计算 的示范
在普通 的 fully connect layers
weights 的计算方式如下:
在 cnn 中
首先:
filterl == kernel
把三个 部分 的 参数 加起来吧,就行了
计算的例子
第一个hidden layer
3
∗
(
2
∗
3
∗
3
)
+
2
=
56
3* (2*3*3)+2=56
3∗(2∗3∗3)+2=56
接下的一层;
2 ∗ ( 3 ∗ ( 3 ∗ 3 ) ) + 3 = 57 2*(3*(3*3))+3=57 2∗(3∗(3∗3))+3=57
output layer:
20 * 20 * 3 = 1200
这是因为 我们的 conv layer 包含 zero padding,所以,输出还是 原图 的 尺寸: 20x20
乘上 3 个 filter 就是 1200
注意 : output layer 是 dense layer
所以: 1200 * 2 + 2(bais) = 2402
最后的参数
参考:
https://www.youtube.com/watch?v=iuJgyiS7BKM&list=PLZbbT5o_s2xq7LwI2y8_QtvuXZedL6tQU&index=34