CNN里面的可学习参数; 深度学习,视频笔记;DL:deeplizard

该博客介绍了如何计算卷积神经网络(CNN)中的可学习参数数量。内容包括普通全连接层权重的计算方式,以及在CNN中,将过滤器(filter)、隐藏层和输出层的参数加总的方法。通过实例展示了第一层隐藏层和下一层的参数计算,以及考虑了零填充(padding)影响的输出层参数。最后,提到了一个视频教程作为参考来源。
摘要由CSDN通过智能技术生成

本视频 内容:

  • cnn 里面 的 可学习参数是啥
  • 如何 计算 cnn 里面 的可学习 参数 的个数
  • 计算 的示范

在普通 的 fully connect layers

weights 的计算方式如下:

在这里插入图片描述

在 cnn 中

首先:

filterl == kernel

在这里插入图片描述
把三个 部分 的 参数 加起来吧,就行了


计算的例子

在这里插入图片描述

第一个hidden layer
在这里插入图片描述

3 ∗ ( 2 ∗ 3 ∗ 3 ) + 2 = 56 3* (2*3*3)+2=56 3(233)+2=56
在这里插入图片描述

在这里插入图片描述

接下的一层;

2 ∗ ( 3 ∗ ( 3 ∗ 3 ) ) + 3 = 57 2*(3*(3*3))+3=57 2(3(33))+3=57

output layer:

20 * 20 * 3 = 1200 这是因为 我们的 conv layer 包含 zero padding,所以,输出还是 原图 的 尺寸: 20x20

乘上 3 个 filter 就是 1200

注意 : output layer 是 dense layer

所以: 1200 * 2 + 2(bais) = 2402

最后的参数

在这里插入图片描述

参考:

https://www.youtube.com/watch?v=iuJgyiS7BKM&list=PLZbbT5o_s2xq7LwI2y8_QtvuXZedL6tQU&index=34

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值