整理数学中一些名字的由来

可公度

毕达哥拉斯及其学派把“万物皆数”作为基本信念。在他们看来,一切事物和现象都可以归结为整数与整数的比,这就是所谓“数的和谐”。而他们相信宇宙的本质就在于这种“数的和谐”。在这种观念下,他们对几何量进行了研究,例如 如何比较两条线段的长度。

在比较两条线段a与b(设b>a)的长度时,如果出现b恰好是a的正整数r倍,我们可以直接用a作为两者的共同度量单位。更一般的情况下,a的正整数倍不是等于b。这时,可以找另一条线段d,使a可以分成d的整数倍n,即a=nd。同时b可以分成d的整数倍m,即b=md。那么毕达哥拉斯学派就把这条线段d 作为a与b的共同度量单位。并说线段a与b是可公约的,或可公度的,其中d 就是两者的共同度量单位

例如,线段a长15,b长21。那么,可以找到一条长为3的小线段d,使得a可以分成 15 / 3 = 5个d。同时b可分成 21 / 3= 7个d。于是,这个长为3的小线段就可作为长为15和21的两条线段的共同度量单位。这时,我们说长为15的线段与长为21的线段是 可公度的

注:可公度,就是说两个数存在共同的度量单位。即 b = (a / n) * m,或 b = (m / n) * a,或 b / a = m / n,m和n都是整数,简单来说任意两数的比是整数或分数,那么这两数是可公度的——有理数。如果任意两数的比不是整数或分数,就是说这两数是不可公度的——无理数。古希腊人使用“有理”、“无理”的术语,其愿意是“可比的”与“不可以的”。在“可比的”之义外,派生出“有理(合乎情理)的”与“无理的”含义。再后来,前一义渐渐被人遗忘,就只剩下后来的含义。于是,“可比数”与“不可以数”转成:前者是合理数,后者是不合理数。最后在转译成中文时就有了“有理数”与“无理数”的称法。

通约量

即可公度的量。

同类量

同类量,就是线段与线段、面积与面积、体积与体积等,属于同一类型的两个或多个对象的量。

两个同类量之间数量关系叫做比。为什么非要两个同类量才有比呢?因为你无法拿线段与面积这两个不同类量进行比较。欧几里得还给出了量的一个定义:如果一个量增大几倍后可以大于另一个量,则说这两个量有一个比。例如 两个量 5和1001。由于5 * 201 后超过1001。于是,就称这两个量有一个比。这个定义的关键在于,它实际上允许了不可通约量的存在。比如 正方形的对角线与边长。因为正方形的边长在 乘以2之后,可以超过其对角线,所以现在对两者就可以定义一个比了。也就是说,这里的比 这一新的数学定义,已突破了毕达哥拉斯认为的 只有可公度量才有可以比的限制。因此新的比的定义,对可公度量和不可公度量都满足了。

公设、公理

柏拉图的学生亚里士多德研究和讨论了三段论问题。他相信,逻辑论证应该建立在三段论的基础上。什么是三段论?“三段论是由三个判断构成,其中两个判断是前提(大前提和小前提),一个判断是结论”。例如:所有人都会死(大前提)、柏拉图是人(小前提),柏拉图会死(结论)。如果三段论的前提正确,那么结论也必定正确。但在亚里士多德看来,不是任何知识都可以作为三段论的前提,大前提必须是大众普遍接受的事实。他还对每门特殊学科中的基本原理和大众共知的普遍真理加以区分,把前者称为公设,后者称为公理。公设——基本原理,公理——普遍真理。现在我们一般已不再区分公设和公理,而统称之为公理

一个命题总是从前一个命题推导出来,而前一个命题又是从更前一个命题推导出来。我们不能这样无限地推导下去,应该有一些命题作为起点。这些作为起点 具有自明性 并被承认下来的命题称为公理

公理化方法

在一个数学理论系统中,我们尽可能少地选取 原始概念(定义) 和 不加证明的一组公理, 以此为出发点,利用纯逻辑推理的法则,把该系统建立成一个演绎系统,这样的方法就是公理化方法

定理

从 基本定义 或 公理 出发,推导出的命题称为 定理

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值