如题:2019年10月:
分析:由方差的性质,详见4
D(2x+1)=D(2x)+0=4D(x)=10,所以D(x)=2.5,答案选B
在此之前,不知什么是方差。
1、什么是方差呢?
可以说是建立在数学期望基础上的概念,什么是数学期望呢?详见扩展:《关于数学期望由来??》
从方差的概念中:X-E(x),可以看出是随机变量X的取值偏离E(x)平均程度的值,可能是正,也可能是负,再取平方之后,都是正。可见方差是对数学期望的偏离程度的放大。如果说数学期望是对一条曲线整体波动性的描述(用值 X 概率,再相加或积分),那么方差则更深入到这个波动性的内部,提示了波动性产生的原因(也就是偏离程度,用随机变量X的平方的数学期望 减去 X的数学期望的平方)。
也就是计算方差公式:公式很重要!!!!!!
2、常见离散型随机变量方差:
0-1分布: D(x)=p(数学期望) * (1-p)
二项分布: D(x)=np * (1-p)
泊松分布: D(x)=(与数学期望一样)
3、常见连续型随机变量的方差:
均匀分布: D(x)=,区间长度的平方除以12
指数分布: D(x)=
正态分布: D(x)=^2
4、方差的性质:
扩展:
- 关于数学期望由来??
整个随机变量的数学特征,数学期望描述的是随机变量取值的平均程度。方差描述的是随机变量的取值偏离其数学期望的偏离程度。相关系数描述的是两个随机变量之间的相互关系,是不是具有线性关系。可见,前两个都是随机变量的取值的特征,也是最先想到的,至于为什么用平均程度来衡量呢?书中提到个词“波动性”就很关键了,这也是其中的原因。
- 离散型随机变量的数学期望:
为什么离散型随机变量的数学期望是通过不同值乘其对应概率,相加得到的呢?可以从其离散型随机变量图形得到,每个具体的值(在x轴),分别对应一个不同的概率值,相加后自然会得到一个值,对于同一个事物研究这个和,仿佛没有什么意义,但当相同的事物大于2个的时候,和越大,说明这个事物的波动性越大,越不稳定,从而具有现实意义和价值。
需要记忆的常见离散型随机变量的数学期望:
0-1分布:P{X=1},P{X=0}=1-p,EX=1*p+0*(1-p)=p
二项分布:X(n,p) ,
EX=np
泊松分布:XP(
),
EX=
离散型随机变量的函数的数学期望:由于随机变量X是离散的,那么关于X的函数也是离散的,所以求函数的分布律只需要将X换成X函数的形式就可以了
- 连续型随机变量的数学期望:
连续型随机变量的数学期望是:没有边界[]的积分,什么含义呢?由连续型随机变量的图形(脑补成一条曲线),x就取全域值[
],f(x)代表这条曲线,积分的话是f(x)在x全域上的值相加,可以看到要知道“波动性”是不是也可以通过个相加的值呢?脑补一下,不同高度的曲线面积。所以连续型随机变量的数学期望就是全域上的积分值。
需要记忆的常见连续型随机变量的数学期望:
均匀分布:EX=
,也就是[a,b]区间的中点。符合数学期望是关于平均程度的描述。
指数分布:EX=
正态分布:XN(
,
^2)
EX=
.
连续型随机变量函数的数学期望:也是将随机变量换成随机变量函数的形式,概率密度不变。
- 二维随机变量的数学期望:思想与一维是一样的,千万不要记公式,只需要明白原理(参考一维)
离散型:
连续型:
- 数学期望的性质:
性质1-3总结:线性组合的数学期望等于期望的线性组合
总结: