【bzoj 1068】[SCOI2007]压缩 区间dp

做完bzoj 1090之后来写这一道题简直就是毒瘤啊!!!!!!虽然主要是怪我没有认真读题,凭着对上一道题的理解,来写着一道,但还是忍不住心累(bzoj 1096:http://blog.csdn.net/pbihao/article/details/52923289)

首先这一道题的R是将到M为止 的所有全部复制也是两道题最大的不同例如aaaaaa在压缩以后只能是aaaR 不能是aaRR而在上一题只是压缩没有乘以二。

那么有没有M在这一段成为一个重要条件,例如aMaRaaa 不能用包含M的(2,4)区间来更新[1,7],解决办法很简单个定义g[i][j]为没有M的区间的最小压缩f[i][j]为可有可不有所以每一次更新的时候g[l][r]=min(g[l][i]+r-i,g[l][r]),而

f[l][r]=min(f[l][r],f[l][i]+f[i+1][r]+1);//中间加上M
f[l][r]=min(f[l][r],f[l][i]+r-i);//不加

可以一次dp的,但是由于一开始我的题意理解错了最后调的时候就写了两个,而现在又不想管了

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
char s[55];
int f[55][55],g[55][55];

bool check(int a,int b){
	int len=b-a+1;
	if(len%2)return false;
	int mid=a+len/2;
	for(int i=1;i<=len/2;i++){
		if(s[a+i-1]!=s[mid+i-1])return false;
	}
	return true;
}

int dfs1(int l,int r){
	int& x=g[l][r];
	if(l==r)return x=1;
	if(x)return x;
	x=r-l+1;
	for(int i=l;i<r;i++){
		dfs1(l,i),dfs1(i+1,r);
		x=min(g[l][i]+r-i,x);
	}
	if(check(l,r))
		x=min(x,g[l][l+r-1>>1]+1);
	return x;
}

int dfs(int l,int r){
	int& x=f[l][r];
	if(l==r)return x=1;
	if(x)return x;
	x=g[l][r]; 
	for(int i=l;i<r;i++){
		dfs(l,i),dfs(i+1,r);
		x=min(x,f[l][i]+f[i+1][r]+1);
		x=min(x,f[l][i]+r-i);
	}
	return x;
}

int main(){
	scanf("%s",s+1);
	dfs1(1,strlen(s+1));
	printf("%d",dfs(1,strlen(s+1)));
	return 0;	
}//bcdcdcdcdxcdcdcdcd



发布了339 篇原创文章 · 获赞 18 · 访问量 6万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览