《Real-Time Compressive Tracking》论文理解

     这是Kaihua Zhang发表在ECCV2012的paper,paper的主题思想是利用满足压缩感知(compressive sensing)的RIP(restricted isometry property)条件的随机测量矩阵(random measurement matrix)对多尺度(multiple scale)的图像特征(features)进行降维,然后通过朴素贝叶斯分类器(naive Bayes classifier)对特征进行分类预测目标位置。

 

首先介绍下paper涉及的知识点:

1、随机投影(Random Projection)

通过矩阵R(m*n维)将高维图像空间的x(m维)投影到低维空间v(n维)表示为:

v=Rx (n<<m)

这就是我们常说的降维,但是降维不能只是降低维度,还要最大可能的保留高维度的信息,怎么做呢?Johnso-Lindenstrauss指出如果将向量空间中两个点能够投影到一个随机选取的合适的高维度的子空间中,则能够以高概率保留两点之间的距离关系,这里的合适的高纬度要比原先的维度要低,而且Baraniuk在论文中证明了满足Johnso-Lindenstrauss推论的随机矩阵同时满足compressive sensing的restricted isometry property(RIP)条件,所以如果随机矩阵R满足Johnso-Lindenstrauss推论,并且x是诸如语音或者图像这种可压缩的信号的话,我们就能以最小误差从低维的v中高概率的重构出高维的x。

 

2随机测量矩阵(random measurement matrix)

一个典型的满足RIP条件的随机测量矩阵是随机高斯矩阵(random Gaussian matrix)R,(R中的每个值rij服从N(0,1)),但是该矩阵有个缺点即一般是稠密的(dense),这样会导致在存取和计算时开销太大而难以接受。

paper的亮点在于找到一个非常稀疏的随机测量矩阵


  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值