线性代数及其应用
第四版
Gilbert Strang
前言
对于这本教材的修订一直以来都是一个特别的挑战,即使是由于一个很好的原因:很多的人读过这本书,将它当作教材来用甚至爱上了它。这本书的灵魂永远不会改变。之所以修订是为了帮助线性代数的教学能够跟上这门学科不断增加的巨大的重要性。
增加新的问题是可能的且必要的。这些年的教学要求大量的新的测试问题(特别是网页上的测试问题)。我想你们会认同问题的扩展。这些问题依然是解释和计算的结合体,这是两种学习这个美妙学科的互补的方法。
我个人认为需要线性代数的人比需要微积分的人要多。牛顿也许不赞成!但是他没有在21世纪教数学(虽然他也许不是一个好老师,但是我们给他质疑的权利)。因为物理学的定律可以很好地由微分方程表示,所以牛顿需要微积分。但是科学、工程和管理(以及生活)的领域现在已经更加的宽阔,从而线性代数占据了核心的地位。
请允许我再多说一点,因为多数大学还没有把平衡向线性代数调整。处理曲线和曲面时,第一步总是线性化 (linearize)。将曲线替换为它的切线,用平面拟合曲面,由此问题变为了线性的。当你有10个变量,或者1000个变量,而不是2个变量时,这个学科的威力就展现了出来。
你也许觉得我用“美丽”这个词来形容一个数学基础课程有些夸大,但是一点也不。这个学科从两个指向不同方向的向量
v
和
用线性方程的术语来描述这个问题,方程
cv+dw=b
有解当且仅当向量
b
和向量
矩阵
我再多讲一点来把三维向量的组合扩展到线性代数。如果向量是
为了找到这些列的组合,用向量 (c,d) 来“乘”这个矩阵:
这些组合填满了一个向量空间。我们叫这个空间是矩阵的列空间。(对于这两列来说,空间是一个平面。)要确定 b=(2,5,7 是否在这个平面上,我们有三个部分需要验证。因此我们要解三个方程:
即
我把这位问题的解决留给各位读者。向量
b=(2,5,7)
确实和向量
v
与
现在我可以说一下本书关于线性方程
Ax=b
的第一部分。矩阵
A
有
行和列的相互作用是线性代数的核心。这并不容易,但也不是太难。这里有四个关键思路:
- 列空间 (列的所有组合)
- 行空间 (行的所有组合)
- 秩 (不相关的列(或者行)的个数)
- 消元 (一种找到矩阵的秩的好方法)
我不再往下讲了,因此你可以开始上课了。
网页
说一下和这本书有关的教材应该是有用的。有很多回复是建议和鼓励,我希望诸位可以免费(自由?)地使用所有的东西。你可以直接访问 http://web.mit.edu/18.06,这个网页会跟着每个学期的教学而不断更新。线性代数也在MIT的OpenCourseWare网站上:http://ocw.mit.edu,在这个网站上18.06是很独特的,因为它包含了上课视频(绝对不是非看不可)。这是是一些网上的资源:
- 课程安排和现在的作业和测试(含答案)。
- 课程目标和概念性问题。
- 可交互的JAVA示例(audio现在已经支持特征值)。
- 线性代数的教学代码和MATLAB问题。
- 所有课程的视频(在一个教室中上的课)
课程页面已经变成了一个到课堂的可用链接以及学生的一个资源。我对于有声音的图像的潜力很乐观。声音的带宽很窄,FlashPlayer是免费可得的。这提供了一个快速的回顾(带有活跃的实验),并且所有的课程都可以下载。我希望全世界的教授和学生都能够得到这些网页的帮助。我的目标是尽量多地提供课程材料以使得此书尽可能地有用。
其它材料
学生解题手稿 0-485-01325-0 学生解题手稿提供了书中奇数号题目的答案。
老师解题手稿 0-030-10588-4 老师解题手稿包含每个章节和所有题目的教学注意点。
课程结构
方阵
我相信大多数人从例子中可以学习到第一个问题。你可以看到:
第一列加第二列等于第三列。一个很好的定理说这三行也不是独立的。第三行一定在前两行的平面上。第一行和第二行的某个组合将得到第三行。你也许能很快地找到这个组合(我办不到)。最后我不得不使用消元来找到正确的组合:2倍的行2减去1倍的行1。
消元是理解矩阵的一种简单而又自然的方法,通过产生很多的0元素。因此课程从消元开始。但是别在这里停留太久!你得从行的组合中,得到行的独立,再到行空间的维数。这是一个重要的目标,以这个视角来看待整个向量空间:行空间,列空间和零空间。
一个更进一步的目标是理解矩阵如何运作。当
A
乘以
这些矩阵的特征值也是特殊的。我觉得2乘2的矩阵是很好的例子来展示特征值
总之,可以从多个方面来看线性代数之美:
- 可视化 向量的组合。向量空间。向量的旋转、映射和投影。向量的垂直。四个基本的子空间。
- 抽象性 向量的独立。向量空间的基和维数。线性变换。奇异值分解和最佳基。
- 计算 消元以产生零元素。克拉莫-斯密特算法来得到正交向量。特征值解微分方程和差分方程。
- 应用 当 Ax=b 的方程数太多时的最小二乘解。用差分方程得到微分方程的近似解。马尔可夫概率矩阵(Google的基础!)。正交特征向量作为主轴(还有更多……)。
要想更多地了解这些应用,请允许我推荐Wellesley-Cambridge Press出版的书。它们都是以信号处理、偏微分方程和科学计算(甚至GPS)为掩盖的线性代数的书。如果你访问http://www.wellesleycambridge.com,你将会看到线性代数的应用为何如此广泛的部分原因。
在此前言之后,本书会自己说出来。你会立刻看到线性代数的灵魂。重点是理解——我努力解释而不是推论。这是一本真正的数学书,而不是无穷无尽的习题。在课堂上,我始终坚持用例子来教会学生他们需要的东西。
声明
我享受写此书的过程,并且也希望读者享受阅读它。乐趣中有很大一部分来自于和朋友一起工作。Brett Coonley, Cordula Robinson 和 Erin Maneri给了我极大的帮助。他们创建了 LATEX 文件并且画了所有的图例。如果没有Brett的支持我将无法完成这个新版本。
Steven Lee和Cleve Moler给我提供了关于教学代码的更为早期的帮助。它们在书中有描述。MATLAB和Maple和Mathematica对于大矩阵来说更快。它们都可以(可选的)用在本课程中。我可以添加“分解”到上面的列表中,作为理解矩阵的第五种方法:
[L, U, P] = lu(A) 来解线性方程组
[Q, R] = qr(A) 来正交化列向量
[S, E] = eig(A) 来找矩阵的特征向量和特征值
在感谢时,我永远不会忘记几年前本书第一版的贡献。这是一个为了无私的礼物感谢我的父母的机会。他们是我生活的灵感。
也感谢各位读者,希望你们能喜欢这本书。
Gilbert Strang