线性代数的应用场景

本文详细介绍了线性代数在机器学习中的重要性,包括矩阵运算、迹、范数、矩阵逆、特征值分解、SVD分解等概念,并通过线性回归、主成分分析(PCA)和PageRank算法的应用实例展示了这些理论的实际价值。通过学习,可以理解线性代数如何为数据可视化、模型降维和网页排名提供数学基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习与线性代数

自打我开始学习机器学习的相关知识以来,线性代数就一直是制约我读懂算法的最大短板。尽管经过大概两个月的学习,我的代数知识积累似乎已经足以让我不害怕任何数学推导了,但是毕竟是将来要赖以生存的本领,如果有一天忘记了它们我会很沮丧的。所以这里我还是决定整理一下与机器学习相关的所有数学知识,方便随时查阅,杜绝忘却。
笔记将以花书《深度学习》为思维导向,从底到上梳理各种可能用到的数学知识。

代数的运算律

和标量类似的运算律有分配律、结合律,而一般不满足交换律,因为代数是有维度的。
A B ≠ B A e x p : ( 2 x 3 ) × ( 3 x 2 ) = ( 2 x 2 ) b u t ( 3 x 2 ) × ( 2 x 3 ) = ( 3 x 3 ) AB \neq BA \qquad exp: (2x3)\times (3x2) = (2x2) \quad but \quad (3x2)\times (2x3) = (3x3) AB=BAexp:(2x3)×(3x2)=(2x2)but(3x2)×(2x3)=(3x3)
此外代数可以转置,也就是沿对角线反转矩阵。代数乘积的转置满足
( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT

T r ( A ) = ∑ i A i , i Tr(A) = \sum_iA_{i,i} Tr(A)=iAi,i
只看这个定义看不出什么,体验它的作用还是在实践中。它有着非常好用的交换律,即使两个矩阵一个是nxn一个是mxm
T r ( A B ) = T r ( B A ) Tr(AB) = Tr(BA) Tr(AB)=Tr(BA)

范数

范数可以把向量映射为非负标量
∣ ∣ x ∣ ∣ p = ( ∑ i ∣ x i ∣ p ) 1 p ||x||_p = (\sum_i|x_i|^p)^{\frac{1}{p}} xp=(ixip)p1
范数常用来评估高维空间中的距离,经典的应用就是正则化和聚类。常用的范数有L1范数,即曼哈顿距离,L2范数即欧几里得距离,有时还会使用Linf范数,即计算向量中最大幅值元素的绝对值。

矩阵逆

单位矩阵一般写成 I I I,是对角线元素为1其他为0的方阵。为此我们有矩阵的逆矩阵的定义
A − 1 A = I A^{-1}A = I A1A=I
做题和考试时求矩阵逆我们可能会采取手算的方法,就是通过多次基本矩阵变换把A变成I,这是同样把这些操作施加于单位矩阵上,就得到逆矩阵。矩阵可逆的条件是矩阵正定,即矩阵中不存在线性相关项。同时,单位正交矩阵的逆矩阵就是它自己的转置。

特征值分解

应某些问题需要,我们经常会用到矩阵对角化的运算。对一个方阵B,我们希望得到
B = P − 1 A P B = P^{-1}AP B=P1AP
其中A是对角矩阵,即对角线上的元素非零其他为零。而P是单位正交矩阵,单位正交矩阵的每一列对应的列向量都是单位向量,且两两正交。也就是满足
d i a g ( A ) = { λ 1 , . . . , λ n } diag(A) = \{\lambda_1,...,\lambda_n\} diag(A)={ λ1,...,λn}
P T P = I P^TP = I PTP=I
这样的矩阵分解方法也可以写成多个向量外积的加和
B = λ 1 p 1 p n T + . . . + λ n p n p n T B = \lambda_1 p_1p_n^T+...+\lambda_np_np_n^T B=λ1p1pnT+...+λnpnpnT
这种分解得到的对角矩阵中的标量称为特征值,每个特征值都会对应一个特征向量。一般的矩阵不一定能对角化,但是对称矩阵一定可以对角化。正定矩阵的特征值都是非负的。

行列式

计算大家都懂,它会得到矩阵所有特征值的乘积。一个有用的性质是, 如果方阵线性相关, 行列式的值为0.

SVD分解

我们不能对一般的矩阵(不一定是方阵)进行对角化,但是我们可以用一些运算构造出能分解的对称矩阵。
M = A T A M = A^TA M=ATA为对称正定矩阵,因为
( A T A ) T = A T ( A T ) T = A T A (A^TA)^T = A^T(A^T)^T = A^TA (A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值