漫步线性代数一——引言

我们以线性代数的中心问题开启我们的航程:解决线性方程。最重要并且也是最简单的情况就是位置函数的数目等于方程的数目。现在我们有包含 n 个未知变量的n个方程,首先从 n=2 开始:

1x+2y=34x+5y=6(1)
未知变量是 x,y 。我打算用消元和行列式两种方式来求解方程。当然 x,y 1,2,3,4,5,6 这些数确定,问题就是如何利用这六个数求解出方程。

  1. 消元 第二个方程减去第一个方程的四倍。从而消去第二个方程中的 x ,只留下了关于y的方程:

    (2)4(1)3y=6(2)
    这样就得到 y=2 。然后 x 从第一个方程1x+2y=3计算出来:
    1x+2(2)=3x=1(3)
    计算出来后, x,y 也应该满足第二个方程。代入得: 4×(1)+5×2=6

  2. 行列式 y=2 完全依赖于方程中的六个数。对于 y 存在一个公式(当然x也有),是两个行列式的比值:

    y=14361425=16341524=63=2(4)
    如果你知道 2×2 方阵的行列式,那么它就没有那么神秘了。它同样给出了解 y=2 。同样利用行列式,我们可以求出 x
    x=36251425=35261524=33=1(5)

我们来比较这两种方法,考虑 n 非常大(在科学计算中n=1000是非常适中的大小)。事实就是直接对1000个方程使用行列式将是一个大灾难。左边将会有百万级别的数目,既然是正确的,但是效率很低。之后会提到该公式如何得到(克莱姆法则),但是目前我们需要一个很好的办法来解决这1000个方程。

最好的办法是高斯消元法。这个算法一直被用于解决大型的方程组。以后的大部分例子都是 n=3 ,这是看不出太大区别。方程 (2)(4) 基本使用相同的步骤得到 y=2 。之后通过回带到方程(3)中很快得出 x 。对于更大的n值,依然有效。消去法比计算行列式要好。

消去法的想法看起来很简单,通过几个例子就能掌握它。它是非常基础的内容,通过简化矩阵我们就能理解它。在此我想讲四点更深层次的内容:

  1. 线性代数带来了平面几何。在十维空间中可视化九维平面不太容易。而理解相交于十个方程解的那些平面更难。但是不见得是不可能的。在图1 中有两条直线,相交于点 (x,y)=(1,2) 。线性代数将图像放到十维空间里,在这个空间里,我们的直觉不得不去想象其几何形状。


    这里写图片描述
    图1:左边是例子的单个解,中间和右边是奇异情况,分别是无解和多个解

  2. 现在考虑矩阵符号,将 n 个未知量表示成向量x n 个方程表示成Ax=b。我们用消去矩阵乘以 A 得到上三角矩阵U。这些步骤将矩阵 A 分解为L×U,其中 L 是下三角矩阵:

    A=1425=14011023=L×U(6)
    首先我们需要介绍矩阵和向量以及乘法规则。每个矩阵都存在转置 AT 。这个矩阵还存在逆矩阵 A1

  3. 大部分情况下,消去法不会存在问题。矩阵可逆的话,方程 Ax=b 还有一个解。但是在特殊的情况下这种方法就被打破了,既可能是方程组的顺序出错(通过交换一笑就能产生),也可能是方程没有唯一解。如果将例子中的5换成8,就出现了奇异的情况:

    1x+2y=34x+8y=6(7)
    消去法依然用第二个减去第一个的四倍,那么结果是:
    (2)4(1)0=6

  4. 对于 n 个方程组,我们希望粗略算出需要多少步消去运算。计算代价经常决定着模型的精度。一百个方程需要一百万步(乘法和减法)的三分之一。计算机可以很快地计算出来。在一百步之后,舍入误差就已经很明显了。(有些问题敏感,而有些不敏感)在不知道全部细节的情况下,我们想明白实际中出现的大型系统以及他们是如何被解决的。

之后我会尽可能有效的介绍消去算法。这个算法用于各种各样的应用中,同时,用矩阵的方式(系数矩阵A,消去矩阵 E ,行交换矩阵P以及因子 L,U )理解它也是非常重要的。我希望接下来的一系列文章能够让大家感到轻松。

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值