一.常规筛选
谈到筛选质数,我们常常会想到这个经典的算法,在这个算法中,我们通过遍历数x的所有可能因数来判断x是否是质数。但是这个算法的时间复杂度较高,为O(n√n),所以我们引入了算法二
bool judge(int x) {
for (int i = 2; i * i <= x; i++) {
if (x % i == 0) return false;
}
return true;
}
二.埃氏筛标记法
这个算法通过给每个非质数进行标记,从最初的质数2开始,将2的所有倍数(非质数)标记为质数。依次进行下去,因为是从小到大进行循环,所以在后面遇到质数时我们可以直接从 改质数的平方(i * i)开始。因为 该质数的倍数 i * 2 、i * 3 、..... i * (i - 1) 都已经被更小的质数筛掉了。
这个算法的时间复杂度为O(n log log n),优于常规筛选。
这个算法的代码如下:
void init() {
for (int i = 0; i < MAX; i++) judge[i] = true;
judge[0] = judge[1] = false;
for (int i = 2; i * i < MAX; i++) {
if (!judge[i])continue;
for (int j = i * i; j < MAX; j += i) {
judge[j] = false;
}
}
}