3、数学课堂中的挑战问题与教学策略

数学课堂中的挑战问题与教学策略

在数学教学中,通过巧妙设计挑战问题,可以激发学生的学习兴趣,培养他们的思维能力。下面我们将探讨多种不同类型的数学挑战问题及其解决策略。

1. 从简单计算拓展思维

通常,孩子们通过老师提供的示例来掌握技能。但让孩子们自己创造示例,能更好地培养他们的自主学习意识。比如,老师可以先让学生从六个数字中组成两个数并求差。引入优化问题后,学生就会更仔细地分析情况,关注影响差值大小的因素。

学生可能会有以下几点发现:
- 要使差值小,所选的两个数都应为三位数。
- 较大数(被减数)的首位数字比小数(减数)的首位数字大 1。
- 减数首位后的数字应尽可能组成大数,被减数首位后的数字应尽可能组成小数。例如,412 - 365 = 47。

此外,还可以改变数字集合,求两个数的最大和最小和、差、积、商和幂。另一个适合小组合作的问题是,用 0 - 9 这十个数字构造三个数,使最大的数是另外两个数的和,求这样的和的最小值和最大值。

2. 基于观察的挑战问题

有时候,一个有趣的观察可以引出一个挑战问题。很多学生可能会注意到两个 2 的和与积相等。老师可以借此让学生寻找其他和与积相等的数对,这些数可以是正整数或有理数。

还有一个拓展问题:
- 挑战 1.2.3(10 - 15 岁) :找出所有可能的两对正整数,使得每对的和等于另一对的积。

解决这个问题的关键观察是,其中一对的和至少要大于等于积。对于这个问题,预代数学生可以通过试错法直观地解决,而代数方法则能更系统地求解。

条件

[混合波束成形]基于深度学习的大规模天线阵列混合波束成形设计(Matlab代码、Python代码实现)内容概要:本文介绍了基于深度学习的大规模天线阵列混合波束成形的设计方法,并提供了Matlab和Python代码实现。该设计聚焦于5G及未来通信系统中的关键使能技术——混合波束成形,通过深度神经网络对复杂的信道状态信息(CSI)进行高效估计波束成形矩阵优化,在保证通信性能的同时降低硬件成本计算开销。文中详细阐述了算法模型构建、训练流程设计及仿真验证过程,展示了深度学习在通信物理层中的深度融合应用,尤其适用于毫米波大规模MIMO系统场景。; 适合人群:具备通信工程、信号处理或人工智能基础知识的研究生、科研人员及从事5G/6G技术研发的工程师;熟悉Matlab或Python编程,对深度学习和无线通信系统有一定实践经验者更为适宜。; 使用场景及目标:①研究深度学习在无线通信物理层中的应用,特别是CSI反馈压缩波束成形优化;②复现先进混合波束成形算法,提升系统频谱效率能效;③为学术论文复现、课题研究或工程项目开发提供可运行的代码参考技术路线支持。; 阅读建议:建议读者结合文中提供的代码逐模块分析,重点关注神经网络结构设计通信约束条件的融合方式,同时可扩展尝试不同网络架构或信道模型以深化理解。
STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动内容概要:本文档为一份名为《STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动》的技术资料,主要围绕基于STM32的永磁同步电机(PMSM)无传感器矢量控制系统的实现展开,详细注解了采用龙贝格观测器(Luenberger Observer)进行转子位置速度估算的控制算法,涵盖三电阻采样、双通道ADC数据采集、电流环前馈补偿、弱磁扩速控制及斜坡启动策略等关键技术模块。该文档不仅提供了完整的控制逻辑说明,还深入解析了底层代码实现,适用于高精度、高性能电机控制系统的开发学习。; 适合人群:具备一定嵌入式开发基础和电机控制理论知识的电气工程、自动化、机电一体化等相关专业的高校师生、科研人员及从事电机驱动开发的工程师;尤其适合希望深入理解无传感器电机控制算法及STM32平台实现的技术人员。; 使用场景及目标:①学习和掌握基于龙贝格观测器的无传感器电机控制原理实现方法;②理解三电阻采样、双AD同步采集、前馈控制、弱磁控制和斜坡启动等关键环节的设计思路代码实现;③用于高校课程设计、毕业设计、科研项目开发或工业级电机控制器的研发参考。; 阅读建议:建议读者结合STM32开发环境和电机控制实验平台进行代码阅读调试,配合电机控制理论教材逐步理解各模块功能,重点关注观测器设计、坐标变换、PI调节器参数整定及ADC采样时序等核心部分,以实现理论实践的有效结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值