遥感影像分类技术与精度评估
1. 最大似然分类结果
最大似然分类使用了所有 10 个聚类的完整特征集。对于草地信息类和稀疏植被信息类,分别隐含地使用了两个光谱类。在分类图中,由于最终用户对光谱类结构不感兴趣,这些光谱类被赋予了相同的颜色。
2. 聚类空间分类
混合分类方法假设光谱类大体上对应单一的信息类,即单个光谱类不会重叠到多个信息类。但实际上,光谱类是光谱空间中数据的分割,很可能由无监督聚类方法生成;而信息类是用户定义的地面区域标签,二者可能会有很大的重叠。
3. 支持向量机监督分类
3.1 初始选择
- 核函数选择 :通常选择多项式核或径向基函数核,这里以径向基函数核为例,公式为 (k(x_i, x) = \exp{-\gamma ||x - x_i||^2}),其中 (\gamma) 是需要估计的参数。
- 多类策略 :选择一对一(OAO)方法,需要生成 (M(M - 1)/2) 个二分类器,每个对应一对信息类。
- 训练数据 :需要为每个信息类收集训练数据。
- 核心方程 :
- 目标函数:(\frac{1}{2} ||w||^2 + C \sum_{i} \xi_i)
- 决策规则:(\text{sgn}{\phi(w)^T\phi(x) + w_{N+1}} = \text{sgn}\left{\sum_{i \in S} \
超级会员免费看
订阅专栏 解锁全文
17万+

被折叠的 条评论
为什么被折叠?



