自然语言处理中的语篇分析
1. 语篇概述
自然语言处理的应用常涉及多句子文档,如餐厅评论、新闻文章、小说等。然而,此前多数方法主要针对单个句子。语篇指的是处理多句子语言现象的理论和方法。语篇结构有多种表征方式,没有一种结构适用于所有计算应用。接下来将介绍一些研究较多的语篇表征,并强调识别和利用这些结构的计算模型。
2. 语篇分段
文档或对话可视为一系列片段的序列,每个片段在内容和/或功能上具有连贯性。不同类型的文本,其分段方式有所不同:
-
维基百科传记
:常围绕主题展开,涉及人物生活的各个方面,如早年经历、重大事件、对他人的影响等。
-
科研论文
:通常按功能主题组织,包括引言、前人研究综述、实验设置和结果等。
书面文本常使用节标题和相关格式来标记片段,但这种格式可能过于粗糙,无法支持特定文本段落的检索。无格式的语音转录,如会议和讲座记录,也是分段的应用场景。
2.1 主题分段
一个连贯的主题片段通过各种语言手段形成一个统一的整体,例如对实体或事件的重复引用、使用连词连接相关想法、通过词汇选择重复意义等。这些连贯手段可被量化,并用作主题分段的特征。
以TextTiling方法为例,其基本思想是计算相邻文本块(句子或固定长度单元)之间的文本相似度,使用的公式如下:
- 计算相邻文本块的余弦相似度:
[s_m = \frac{\mathbf{x}
m \cdot \mathbf{x}
{m + 1}}{|\mathbf{x}
m|_2 \times |\mathbf{x}
{m + 1}|
2}]
- 对相似度进行平滑处理:
[ \tilde{s}_m = \sum
{\ell = 0}^{L} k_{\ell}(s_{m + \ell} + s_{m - \ell})]
其中,(k_{\ell}) 表示大小为 (L) 的平滑核的值,例如 (k = [1, 0.5, 0.25]^{\top})。
分段点可通过平滑相似度中的局部最小值来确定,因为这些点表明文本中单词的整体分布发生了变化。
文本分段也可表述为概率模型,每个片段有一个独特的语言模型,定义了该片段中文本的概率。这种概率方法可扩展到层次主题分段,将每个主题片段进一步划分为子片段。这些方法大多是无监督的,但在有领域内标注数据的情况下,监督方法可通过学习多种特征的权重来显著提高性能。
2.2 功能分段
在某些类型的文本中,存在一组规范的交际功能。例如,科研论文中,有传达文章背景信息、介绍新贡献、描述研究目的等功能。功能分段将文档划分为连续的片段,每个片段中的句子具有相同的功能。
- 监督方法 :Teufel和Moens(2002)训练了一个监督分类器,使用句子在文本中的位置、与文章其他部分和标题的相似度、主要动词的时态和语态以及前一个句子的功能角色等特征,来识别科研论文中每个句子的功能。
- 无监督方法 :Chen等人(2009)注意到某些类型的维基百科文章具有非常一致的功能分段,因此引入了一种无监督模型,用于学习与每个功能相关的语言模型以及功能片段在文章中的典型模式。
3. 实体与指称
语篇的另一个维度涉及文本中提及的实体以及提及方式。不同的指代表达选择和句法结构会影响语篇的连贯性。
3.1 中心理论
中心理论详细阐述了语篇与实体指称之间的关系。该理论认为,语篇中的每个话语由一组称为中心的实体来表征:
-
前向中心
:话语 (m) 中的前向中心 (cf(w_m)) 是该话语中提及的所有实体,这些实体按句法显著性部分排序,主语优先于其他位置。
-
后向中心
:话语 (m) 中的后向中心 (cb(w_m)) 是前一个话语 (cf(w_{m - 1})) 中排名最高且在 (w_m) 中也被提及的元素。
中心理论对指代表达的形式和位置做出了以下预测:
- 如果话语 (w_m) 中出现代词,那么后向中心 (cb(w_m)) 也必须以代词形式出现。
- 话语序列应尽可能保留相同的后向中心,理想情况下,后向中心也应是前向中心列表中的最高排名元素。
3.2 实体网格
实体网格是一种将文本或对话中的实体进行形式化的方法。它是一个数据结构,每行对应一个句子,每列对应一个实体。每个单元格 (c(m, i)) 可以取以下值:
[c(m, i) =
\begin{cases}
S, & \text{实体 } i \text{ 在句子 } m \text{ 中处于主语位置} \
O, & \text{实体 } i \text{ 在句子 } m \text{ 中处于宾语位置} \
X, & \text{实体 } i \text{ 出现在句子 } m \text{ 中,但既不在主语也不在宾语位置} \
-, & \text{实体 } i \text{ 未出现在句子 } m \text{ 中}
\end{cases}]
构建实体网格时,需要进行句法分析以确定主语和宾语位置,并进行共指消解以链接同一实体的多个提及。文档的连贯性可以通过每列中相邻单元格之间的转换来衡量,转换概率可从标注数据中估计,实体网格的得分可通过所有列和所有转换的对数概率之和来计算。实体网格已被证明在确定文章可读性、正确排序打乱的句子以及解开在线多方聊天中的多个对话线程等任务中很有用。
3.3 超越句子层面的形式语义
另一种观点关注形式语义以及多句子单元的意义表征构建。例如,对于句子 “Angus owns a dog.” 和 “It bit Irene.”,需要将第一个句子中的 “dog” 与第二个句子中的未绑定变量 “y” 链接起来,以获得统一的语义表征 (\exists x.DOG(x) \land OWN(ANGUS, x) \land BITE(x, IRENE))。这一基本思想是动态语义学的根源,分段语篇表征理论将动态语义学与一组语篇关系联系起来,解释相邻文本单元之间的修辞或概念关系。
4. 语篇关系
在依存语法中,句子由单词之间的句法关系图(通常是树)来表征。类似的思想可应用于文档层面,识别语篇单元(如从句、句子或段落)之间的关系。语篇解析的任务是识别语篇单元及其之间的关系,这些关系可应用于文档分类和摘要等任务。
语篇关系可分为以下几类:
| 关系类型 | 子类型 |
| ---- | ---- |
| 时间关系(TEMPORAL) | 异步(Asynchronous)、同步(Synchronous,包括先后顺序等) |
| 因果关系(CONTINGENCY) | 原因(Cause,如结果、原因)、语用原因(Pragmatic cause,如合理性)、条件(Condition,如假设、一般、非真实现在、非真实过去、真实现在、真实过去)、语用条件(Pragmatic condition,如相关性、隐含断言) |
| 比较关系(COMPARISON) | 对比(Contrast,如并列、对立)、语用对比、让步(Concession,如期望、反期望)、语用让步 |
| 扩展关系(EXPANSION) | 连接(Conjunction)、实例化(Instantiation)、重述(Restatement,如具体化、等价、概括)、选择(Alternative,如联合、分离、选择的替代方案)、例外(Exception)、列表(List) |
4.1 浅层语篇关系
语篇关系的存在可通过语篇连接词(如 “however”、“moreover”、“meanwhile”、“if…then” 等)来暗示。这些连接词明确指定了相邻文本单元之间的关系,可作为语篇关系分析的起点。
在词汇化树邻接语法(D - LTAG)中,每个连接词锚定两个文本单元之间的关系,为宾夕法尼亚语篇树库(PDTB)提供了理论基础。PDTB是最大的英语语篇关系语料库,包括一个层次化的语篇关系清单,通过抽象真实文本中语篇连接词的含义创建。该语料库在新闻文本上进行标注,添加了以下信息:
- 每个连接词标注其所表达的语篇关系(如果有),因为许多语篇连接词在某些意义上并不表示语篇关系。
- 对于每个语篇关系,指定关系的两个参数为ARG1和ARG2,其中ARG2必须与连接词相邻。这些参数可以是句子,也可以是更小或更大的文本单元。
- 相邻句子标注隐式语篇关系,即没有连接词标记的关系。如果可以在一对句子之间插入连接词,标注者会提供该连接词并标注其意义。在某些情况下,相邻句子之间没有关系,标注为NOREL;在其他情况下,唯一的关系是相邻句子提及一个或多个共享实体,标注为ENTREL。
4.1.1 显式语篇关系及其参数分类
许多连接词可用于调用多种类型的语篇关系,有些连接词的某些意义与语篇无关。在宾夕法尼亚树库中,显式标记的语篇关系的意义在粗粒度级别相对容易分类,但在更细粒度的级别上,连接词的歧义性增加,自动意义分类的准确性和标注者之间的一致性都会下降。
识别显式语篇关系的参数范围是一个更具挑战性的任务,因为语篇连接词不一定与ARG1相邻,且参数不一定连续。许多方法通过训练分类器来预测每个句法成分是否是每个显式语篇连接词的合适参数。
4.1.2 隐式语篇关系分类
隐式语篇关系的分类和标注要困难得多。大多数方法基于对每个参数的编码,然后将其作为非线性分类器的输入:
[z(i) = Encode(w(i))]
[z(i + 1) = Encode(w(i + 1))]
[\hat{y}_i = \arg\max_y \Psi(y, z(i), z(i + 1))]
mermaid流程图:
graph LR
A[语篇分析] --> B[语篇分段]
B --> B1[主题分段]
B --> B2[功能分段]
A --> C[实体与指称]
C --> C1[中心理论]
C --> C2[实体网格]
C --> C3[形式语义]
A --> D[语篇关系]
D --> D1[浅层语篇关系]
D1 --> D11[显式语篇关系分类]
D1 --> D12[隐式语篇关系分类]
总之,语篇分析在自然语言处理中起着重要作用,通过对语篇的分段、实体指称和语篇关系的研究,可以更好地理解和处理多句子文档。
自然语言处理中的语篇分析(续)
5. 语篇分析的应用
语篇分析的成果在多个自然语言处理任务中有着广泛的应用,以下是一些具体的应用场景:
5.1 文档分类
语篇关系和结构信息可以为文档分类提供重要的特征。例如,在新闻文章分类中,不同类型的新闻(如政治、经济、体育等)可能具有不同的语篇结构和关系模式。通过识别语篇单元之间的关系,如因果关系、对比关系等,可以更准确地判断文档的主题类别。具体操作步骤如下:
1.
语篇解析
:对文档进行语篇解析,识别语篇单元和它们之间的关系。
2.
特征提取
:从语篇关系中提取特征,如关系的类型、频率等。
3.
分类模型训练
:使用提取的特征训练分类模型,如支持向量机、决策树等。
4.
文档分类
:将待分类的文档进行语篇解析和特征提取,然后使用训练好的分类模型进行分类。
5.2 文档摘要
语篇分析有助于生成更连贯、更有针对性的文档摘要。通过理解语篇单元之间的关系,可以确定哪些内容是关键信息,哪些内容可以省略。例如,在生成新闻摘要时,可以根据语篇关系突出重要的事件和观点。操作步骤如下:
1.
语篇单元识别
:将文档划分为语篇单元,如句子、段落等。
2.
关系分析
:分析语篇单元之间的关系,确定关键信息和核心观点。
3.
摘要生成
:根据关系分析的结果,选择关键的语篇单元组成摘要。
4.
摘要优化
:对生成的摘要进行优化,确保其连贯性和可读性。
5.3 文本生成
在文本生成任务中,如机器翻译、自动问答等,语篇分析可以帮助生成更自然、连贯的文本。通过遵循语篇规则和关系,可以使生成的文本在语义和结构上更加合理。例如,在机器翻译中,考虑源语言和目标语言的语篇差异,可以提高翻译的质量。具体步骤如下:
1.
输入理解
:对输入的文本进行语篇分析,理解其结构和关系。
2.
生成规划
:根据语篇分析的结果,规划生成文本的结构和内容。
3.
文本生成
:按照规划生成文本,并在生成过程中考虑语篇关系的约束。
4.
输出评估
:对生成的文本进行评估,检查其连贯性和合理性。
6. 语篇分析的挑战与未来发展方向
尽管语篇分析已经取得了一定的进展,但仍然面临着一些挑战,同时也有着广阔的未来发展方向。
6.1 挑战
- 数据标注困难 :语篇关系的标注需要专业的知识和大量的人力,而且不同标注者之间可能存在一定的差异,导致标注结果的一致性问题。
- 隐式关系识别 :隐式语篇关系没有明显的连接词提示,识别难度较大,目前的方法在这方面的性能还不够理想。
- 多模态语篇分析 :随着多媒体技术的发展,多模态语篇(如文本、图像、音频等)的分析需求日益增加,但目前的研究还处于起步阶段。
6.2 未来发展方向
- 融合多源信息 :结合语义信息、句法信息、上下文信息等多源信息,提高语篇分析的准确性和可靠性。
- 深度学习技术的应用 :利用深度学习模型,如循环神经网络(RNN)、卷积神经网络(CNN)、Transformer等,自动学习语篇的特征和模式。
- 跨语言语篇分析 :研究不同语言之间的语篇差异和共性,实现跨语言的语篇分析和处理。
7. 总结
语篇分析是自然语言处理中的一个重要研究领域,它涉及到语篇的分段、实体指称、语篇关系等多个方面。通过对语篇的深入分析,可以更好地理解和处理多句子文档,为文档分类、摘要、生成等任务提供有力的支持。
虽然语篇分析面临着一些挑战,但随着技术的不断发展和研究的深入,相信在未来会取得更加显著的成果。以下是一个总结表格,概括了语篇分析的主要内容:
| 分析维度 | 具体内容 |
|---|---|
| 语篇分段 | 主题分段、功能分段 |
| 实体与指称 | 中心理论、实体网格、形式语义 |
| 语篇关系 | 浅层语篇关系(显式和隐式) |
| 应用 | 文档分类、文档摘要、文本生成 |
| 挑战 | 数据标注困难、隐式关系识别、多模态语篇分析 |
| 未来发展方向 | 融合多源信息、深度学习技术应用、跨语言语篇分析 |
mermaid流程图:
graph LR
A[语篇分析挑战] --> B[数据标注困难]
A --> C[隐式关系识别难]
A --> D[多模态语篇分析起步]
E[语篇分析未来方向] --> F[融合多源信息]
E --> G[深度学习应用]
E --> H[跨语言语篇分析]
希望通过本文的介绍,能让大家对语篇分析有更深入的了解,也期待更多的研究者和开发者能够关注和参与到这个领域的研究中来。
超级会员免费看
16

被折叠的 条评论
为什么被折叠?



