解开犯罪网络的谜团:案例研究
1. 犯罪网络分析基础
在犯罪网络分析中,有几个关键的概念和方法。中心性度量是评估网络中节点重要性的常用手段,包括度中心性、中介中心性和接近中心性。这三种度量虽然都用于说明节点的重要性或中心地位,但对网络成员角色的解读有所不同。例如,度中心性高的个体可能具有领导职能,而中介中心性高的个体可能是网络中的守门人。
交互模式发现也是重要的一环。通过块模型分析,可以发现子组之间的交互模式。块模型分析会根据预定义的阈值比较子组之间的链接密度,从而确定子组之间是否存在关联。这种方法将个体交互细节总结到组间交互中,使网络的整体结构更加明显。
网络可视化则是将网络以图形方式呈现的方法。最小空间分析(SSA)是多维尺度分析(MDS)的一个分支,常用于生成社交网络的二维表示。在 SSA 生成的网络图形中,节点或组之间的关联越强,在图上的距离就越近;关联越弱,距离就越远。不过,一些现有的网络分析工具,如 Analyst’s Notebook、Netmap 和 Watson,虽然能自动绘制犯罪网络的图形表示,但结构分析功能有限,仍需调查人员手动提取结构模式。
2. 原型系统架构
为了更好地分析犯罪网络,开发了一个原型系统,它包含三个主要组件:
2.1 网络创建组件
使用概念空间方法,基于犯罪数据自动创建网络。假设一起犯罪的罪犯可能存在关联,且共同出现的频率越高,关联的可能性就越大。将每个犯罪事件摘要视为一个文档,每个人的名字视为一个短语,然后根据两人在同一犯罪事件中共同出现的频率计算共现权重。共现权重不仅意味着两名罪犯之间的关系,还表明了关系的强度。具体操作步骤如下:
1. 收
超级会员免费看
订阅专栏 解锁全文
1249

被折叠的 条评论
为什么被折叠?



