【NLG】(三)文本生成评价指标—— ENTROPY原理及代码示例

前奏:

【NLG】(一)文本生成评价指标——BLEU原理及代码示例

【NLG】(二)文本生成评价指标—— METEOR原理及代码示例


1.ENTROPY原理

信息熵可以表达数据的信息量大小,是信息处理一个非常重要的概念。

对于离散型随机变量,信息熵公式如下:

对于连续型随机变量,信息熵公式如下:

对于生成的文本而言,希望其“言之有物”,“灼灼其华”,那可以衡量的一个指标是熵,即:系统整体所包含的的信息量。

2.优缺点

这个没有明确的优缺点,该指标在陈述一个事实。

3.如何算ENTROPY

一个首要问题:p(x)怎么计算?对于离散型随机变量而言,其出现的概率= 出现次数/整体的词。

输入是生成的文本,多个文本,字与字之间用空格分离,可以组成list,作为输入。

输出是生成的文本的熵。

def entropy(predicts):
    etp_score = [0.0, 0.0, 0.0, 0.0]
    div_score = [0.0, 0.0, 0.0, 0.0]
    counter = [defaultdict(int), defaultdict(int),
               defaultdict(int), defaultdict(int)]
    for gg in predicts:
        g = gg.rstrip().split()
        for n in range(4):
            # print('---n: ', n)
            for idx in range(len(g)-n):
                ngram = ' '.join(g[idx:idx+n+1])
                # print('----ngram: ', ngram)
                counter[n][ngram] += 1
    # print('---counter: ', counter)
    for n in range(4):
        # print('---scores n: ', n)
        total = sum(counter[n].values()) + 1e-10
        for v in counter[n].values():
            etp_score[n] += - (v+0.0) / total * (np.log(v+0.0) - np.log(total))
        div_score[n] = (len(counter[n].values())+0.0) / total
    return etp_score, div_score

if __name__ == '__main__':
    predicts = ['你 说 什 么 ?', '你 说 的 是 啥 ?']
    etp_score, div_score = entropy(predicts)

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
当涉及到自然语言生成NLG)时,循环神经网络(RNN)是一个常见的选择。下面是一个简单的RNN模型,用于生成一段文本: ``` import numpy as np import tensorflow as tf # 定义超参数 num_epochs = 10 batch_size = 32 learning_rate = 0.001 # 准备数据 data = [...] # 假设已经准备好了数据 vocab_size = len(set(data)) # 计算词汇表大小 # 将数据转换为数字序列 data_as_int = [char_to_idx[c] for c in data] # 创建输入和输出序列 input_seq = data_as_int[:-1] output_seq = data_as_int[1:] # 将数据分成批次 num_batches = len(input_seq) // batch_size input_batches = np.split(np.array(input_seq[:num_batches * batch_size]), num_batches, axis=0) output_batches = np.split(np.array(output_seq[:num_batches * batch_size]), num_batches, axis=0) # 定义模型 model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, 64, mask_zero=True), tf.keras.layers.SimpleRNN(64), tf.keras.layers.Dense(vocab_size, activation='softmax') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss='sparse_categorical_crossentropy') # 训练模型 for epoch in range(num_epochs): for i in range(num_batches): loss = model.train_on_batch(input_batches[i], output_batches[i]) if i % 100 == 0: print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1, i, loss)) # 生成文本 def generate_text(model, start_string): # 将起始字符串转换为数字序列 input_eval = [char_to_idx[s] for s in start_string] input_eval = tf.expand_dims(input_eval, 0) # 初始化隐藏状态 hidden_state = model.reset_states() # 生成文本 text_generated = [] for i in range(1000): # 预测下一个字符 predictions, hidden_state = model(input_eval, hidden_state) predictions = tf.squeeze(predictions, 0) predicted_id = tf.random.categorical(predictions, num_samples=1)[-1, 0].numpy() # 将预测的字符添加到生成文本中 text_generated.append(idx_to_char[predicted_id]) # 将预测的字符作为下一步的输入 input_eval = tf.expand_dims([predicted_id], 0) return (start_string + ''.join(text_generated)) # 生成一段文本 generated_text = generate_text(model, start_string='The quick brown fox') print(generated_text) ``` 这个模型使用一个简单的RNN层来生成文本。首先,我们将数据转换为数字序列,并将其分成批次。然后,我们定义了一个简单的RNN模型,其中包括一个嵌入层、一个RNN层和一个全连接层。我们使用`sparse_categorical_crossentropy`作为损失函数,因为我们的输出是一个整数序列,而不是一个独热编码序列。 在训练模型时,我们使用`train_on_batch`方法来逐批训练模型。在每个时代和每个批次之后,我们记录损失并生成一段文本。最后,我们使用训练好的模型来生成一段文本,该文本以给定的起始字符串开头。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值