ChatGPT 背后核心技术的白话版

本文介绍了ChatGPT的核心技术,包括大型语言模型(LLMs)的学习过程,如Transformer和Self-attention机制。通过监督学习、奖励模型和强化学习(RLHF)改进,特别是结合人类反馈,ChatGPT能更好地理解和响应用户意图。
摘要由CSDN通过智能技术生成

本文是关于ChatGPT 背后核心技术实现的一个通俗白话版,不涉及到的AI具体实现的技术细节哦。

在编排上增加了一些分割,内容具体如下:

LLMs(大型语言模型)

如果将ChatGPT比作是动物,它就像一只饥饿的毛毛虫一样,毛毛虫喜欢啃食树叶,并不断的长大。

LLMs(大型语言模型)也喜欢吞噬大量的文本数据,并利用这些数据来学习,然后变得更加的聪明,更加的强大。LLMs消耗的文本数据越多,它们对语言和词语之间的关系的理解就越深。

就如同自然界内,毛毛虫要变成美丽的蝴蝶一样,LLMs也会进化为强大的语言模型,它也可以理解并生成类似人类的反应。

语言模型被训练来预测一个序列中的下一个词,有两种常见的方法:下一个标记预测(next-token-prediction)和掩码语言建模(masked-language modeling)。

Next-token-prediction模型的样本,比如:

"The cat sat on the...."

Next-token-prediction模型将被训练来预测 “The cat sat on the....”之后的下一个单词。给定输入“The cat sat on the....”,模型可以预测“mat”、“couch”或“chair”。

Masked-language-modeling模型的样本为:

The quick brown [

ChatGPT背后的技术包括以下几个方面: 1. GPT-3(Generative Pre-trained Transformer 3):ChatGPT是基于GPT-3模型开发的。GPT-3是一种自然语言处理模型,它使用了Transformer架构,并通过大规模的预训练来学习语言的统计规律和语义理解能力。 2. 自然语言处理(NLP):ChatGPT利用自然语言处理技术来理解和生成人类语言。NLP技术包括词法分析、句法分析、语义理解、***强化学习等。 4. 深度学习:ChatGPT利用深度学习技术来构建和训练神经网络模型。深度学习技术包括神经网络的结构设计、反向传播算法、优化算法等。 5. 强化学习:ChatGPT可能使用强化学习技术来提高对话系统的性能。强化学习技术包括定义状态、动作和奖励函数,以及使用价值函数或策略函数进行决策。 6. 云计算:ChatGPT可能利用云计算平台来进行模型训练和推理。云计算技术包括分布式计算、弹性计算、存储服务等。 7. 大数据:ChatGPT可能使用大数据来进行模型训练和优化。大数据技术包括数据采集、数据存储、数据处理和数据分析等。 8. 编程语言ChatGPT开发可能涉及多种编程语言,如Python、TensorFlow、PyTorch等。 9. 网络架构:ChatGPT可能使用分布式计算和网络架构来支持高性能的模型训练和推理。网络架构技术包括分布式系统设计、负载均衡、容错机制等。 10. 自动化部署:ChatGPT可能使用自动化部署技术来实现模型的快速部署和更新。自动化部署技术包括容器化、持续集成/持续部署(CI/CD)等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值