k-means初始中心的选择

http://blog.csdn.net/hustlx/article/details/51362267

原文介绍了几种初始中心的方法,以及k值的选择。

初始中心选择过程中,对于第一种方法,即:

1.假设原始数据集为x,先随机选择一个数据点center_first(或者指定)

2.定义一个距离标准dist,计算dist(center_first,x)

3.选择出距离最远的那个数据点。

4.然后在迭代,寻找下一个距离之前的初始中心距离最远的点,直到指定的k值都选择完毕。


在运用这个方法的过程中,需要注意的是:

1.数据集若有离群点,那么选择的中心可能会有问题。

这一点可以通过取均值的情况得以缓解。

总体效果还可以接受

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值