“
运动控制技术的进步使得足式机器人的运动能力更强,而近来轨迹优化作为主流学术研究方向,能够为足式机器人运动控制的发展提供可能的指引。本期技术干货,我们邀请到了小米工程师徐喆,向我们介绍足式机器人运动控制的发展方向——轨迹优化。
”
一、前言
足式机器人的运动控制技术在近几十年取得了巨大的发展,80年代Marc Raibert提出的经典三分控制方法,实现了高动态的运动,也为后来Boston Dynamics的发展奠定了基础;90年代本田机器人研究院利用零力矩点控制(ZMP)实现了全尺寸仿人机器人Asimo的行走、奔跑和舞蹈,也代表了当时足式机器人的最高成就;新世纪以来,随着无框力矩电机的技术革命、计算机算力的持续增强和工业总线技术的发展,复杂的运动控制技术如全身运动控制(WBC)、模型预测控制(MPC)在足式机器人上应用成为了主流,足式机器人也如雨后春笋一样迎来了蓬勃的发展,像Boston Dynamics的Atlas、Spot机器人,MIT大学的Cheetah系列机器人、瑞士ETH大学的ANYmal系列机器人开始进入大家的视野。
虽然运动控制算法的发展给足式机器人带来更强的运动能力,但是与足式生物相比,机器人的运动能力仍然显得不足,那么未来足式机器人运动控制的发展方向会是什么呢?这篇文章会跟大家分享一个可能的方向——轨迹优化。
二、轨迹优化
>>>>1.什么是轨迹优化
轨迹优化指的是在满足某些约束的情况下,通过最小化代价函数,来设计一条轨迹的过程 [1]。用数学可以表示为如下形式,其中min中的部分就是代价函数,subject to中的内容就是约束,求解这个问题之后,就可以得到状态x和控制输入u随时间变化的轨迹。
轨迹优化的算法已经有将近100年的历史,但是由于其庞大的计算量,在计算机技术面世之后轨迹优化才被应用到实际中。最早使用轨迹优化的是航天航空和军事领域,例如SpaceX计算回收火箭下落的轨迹,就是一个典型的轨迹优化问题。如视频所示,火箭的初始状态是平行于地面的,轨迹优化需要解决的问题就是找到一条轨迹,让火箭竖直落在标靶附近。在这个例子中,需要满足的约束包括火箭的动力学模型、火箭的推力和加速度限制等;代价函数用来描述火箭落地的位置与指定位置的距离,一般用二次型来表示。最后,利用求