《数字图像处理》第三版笔记(七)快速傅立叶变换

学习进行到此处,发现程序性能越来越差,本书竟然没提到傅立叶变化还有快速变化改进方法。下边我就介绍下快速变换的原理以及程序实现。


1、FFT的由来

    离散傅里叶变换(Discrete Fourier Transform,DFT)是数字信号处理最重要的基石之一,也是对信号进行分析和处理时最常用的工具之一。在200多年前法国数学家、物理学家傅里叶提出后来以他名字命名的傅里叶级数之后,用DFT这个工具来分析信号就已经为人们所知。历史上最伟大的数学家之一。
    欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = f(x)。他是把微积分应用于物理学的先驱者之一。 给出了一个用实变量函数表示傅立叶级数系数的方程;  用三角级数来描述离散声音在弹性媒介中传播,发现某些函数可以通过余弦函数之和来表达。 但在很长时间内,这种分析方法并没有引起更多的重视,最主要的原因在于这种方法运算量比较大。直到1965年,Cooley和Tukey在《计算机科学 》发表著名的《机器计算傅立叶级数的一种算法》论文,FFT才开始大规模应用
    那个年代,有个肯尼迪总统科学咨询委员会。其中有项研究主题是,对苏联核测试进行检测,Tukey就是其中一员。美国/苏联核测试提案的批准,主要取决于不实地访问核测试设施而做出检测的方法的发展。其中一个想法是,分析离海岸的地震计情况,这种计算需要快速算法来计算DFT。其它应用是国家安全,如用声学探测远距离的核潜艇。所以在军事上,迫切需要一种快速的傅立叶变换算法,这也促进了FFT的正式提出。
    FFT的这种方法充分利用了DFT运算中的对称性和周期性,从而将DFT运算量从N2减少到N*log2N。当N比较小时,FFT优势并不明显。但当N大于32开始,点数越大,FFT对运算量的改善越明显。比如当N为1024时,FFT的运算效率比DFT提高了100倍。在库利和图基提出的FFT算法中,其基本原理是先将一个N点时域序列的DFT分解为N个1点序列的DFT,然后将这样计算出来的N个1点序列DFT的结果进行组合,得到最初的N点时域序列的DFT值。实际上,这种基本的思想很早就由德国伟大的数学家高斯提出过,在某种情况下,天文学计算(也是现在FFT应用的领域之一)与等距观察的有限集中的行星轨道的内插值有关。由于当时计算都是靠手工,所以产生一种快速算法的迫切需要。 而且,更少的计算量同时也代表着错误的机会更少,正确性更高。高斯发现,一个富氏级数有宽度N=N1*N2,可以分成几个部分。计算N2子样本DFT的N1长度和N1子样本DFT的N2长度。只是由于当时尚欠东风——计算机还没发明。在20世纪60年代,伴随着计算机的发展和成熟,库利和图基的成果掀起了数字信号处理的革命,因而FFT发明者的桂冠才落在他们头上。
     之后,桑德(G.Sand)-图基等快速算法相继出现,几经改进,很快形成了一套高效运算方法,这就是现在的快速傅立叶变换(FFT)。这种算法使DFT的运算效率提高1到2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了良好的条件,大大推进了数学信号处理技术。1984年,法国的杜哈梅(P.Dohamel)和霍尔曼(H.Hollamann)提出的分裂基块快速算法,使运算效率进一步提高。
    库利和图基的FFT算法的最基本运算为蝶形运算,每个蝶形运算包括两个输入点,因而也称为基-2算法。在这之后,又有一些新的算法,进一步提高了FFT的运算效率,比如基-4算法,分裂基算法等。这些新算法对FFT运算效率的提高一般在50%以内,远远不如FFT对DFT运算的提高幅度。从这个意义上说,FFT算法是里程碑式的。可以说,正是计算机技术的发展和FFT的出现,才使得数字信号处理迎来了一个崭新的时代。除了运算效率的大幅度提高外,FFT还大大降低了DFT运算带来的累计量化误差,这点常为人们所忽略。


2、直接计算DFT的问题及改进路径


2.1 问题的提出

    设有限长序列x(n),非零值长度为N,若对x(n)进行一次DFT运行,共需要多大的运算工作量。

2.2 DFT的运算量

    DFT和IDFT的变换式:

注意:
 

由上面的结算可得DFT的计算量如下:



复数乘法的计算量:(a+jb)(c+jd)=(ab-bd)+j(bc+ad)



下面通过两个实例来说明计算量:
例一:计算一个N点DFT,共需次复乘。以做一次复乘1计算,若N=4096,所需时间为
                      
例二:石油勘探,有24个通道的记录,每通道波形记录长度为5秒,若每秒抽样500点/秒。
1. 每道总抽样点数:500*5 = 2500点。
2. 24道总抽样点数:24*2500=6万点。
3. DFT复乘运算时间:


    由于计算量大,且要求相当大的内存,难以实现实时处理,限制了DFT的应用,人们一直在寻求一种能提高DFT运算速度的方法。
    FFT便是Cooley和Tukey在1995年提出来的快速算法,它可以使运算速度提高几百倍,从而使数字信号处理成为一个新兴的应用学科。


3、 改善DFT运算效率的基本途径
1、利用DFT运算的系数的固有对称性和周期性,改善DFT的运算效率。
    1)对称性
    2)周期性
    3)可约性
  

2、将长序列DFT利用对称性和周期性分解为短序列DFT的思路
    因为DFT的运算量与N2成正比,如果一个大点数N的DFT能分解为若干小点数DFT的组合,则显然可以达到减少运算工作量的效果。


FFT算法的基本思想:
  Ø 利用DFT系数的特性,合并DFT运算中的某些项。
  Ø 把长序列DFTà短序列DFT,从而减少运算量。

FFT算法分类:
    时间抽选法
      DIT: Decimation-In-Time
    频率抽选法
      DIF: Decimation-In-Frequency


按时间抽选的基2-FFT算法


4.1 算法原理

设输入序列长度为(M为正整数),将该序列按时间顺序的奇偶分解为越来越短的子序列,称为基2按时间抽取的FFT算法。也称为Coolkey-Tukey算法。
其中基2表示:,M为整数。若不满足这个条件,可以人为地加上若干零值(加零补长)使其达到

4.2 算法步骤


Ø 分组,变量置换

先将x(n)按n的奇偶分为两组,作变量置换:
当n = 偶数时,令n = 2r;
当n = 奇数时,令n = 2r+1;
得到:
x(2r)=x1(r)
x(2r+1)=x2(r)    r = 0,……-1
Ø 分组,变量置换


其中k = 0, 1,. N/2  1。到此时为止,似乎没什么用,不过是拆成2部分算,计算量其实是一样的。那么我们再利用系数的周期特性来看看。


又考虑到的对称性:





有了上面的计算结果后。我们可以看出,只要算出X1,X2和Wnk的值,就可以一次算出2个数,即X(K)和X(N/2+K)的值,这不就优化了吗?

我们可以得到如下的蝶形运算流图符号:


关于这个蝶形运算流图符号说明如下:
1. 1个蝶形运算需要1次复乘,2次复加。
2. 左边两路为输入。
3. 右边两路为输出。
4. 中间以一个小圆表示加减运算(右上路为相加输出,右下路为相减输出)。


分解后的运算量

运算量减少了近一半。
例子:点FFT变化。按N=8àN/2=4,做4点的DFT,先将N=8点的DFT分解成2个4点的DFT:
可知:  时域上 x(0),x(2),x(4),x(6)为偶子序列。
               x(1),x(3),x(5),x(7)为奇子序列。
        频域上  X(0) 到X(3) 由X(k)给出
                X(4) 到X(7) 由X(k+N/2)给出
N=8点的直接DFT的计算量为:


得到需要:


此外,还有4个蝶形结,每个蝶形结需要1次复乘,2次复加。一共是:复乘4次,复加8次。
用分解的方法的得到X(k)需要:
复乘:32+4=36次
复加:24+8=32次
按时间抽取的DFT分解过程:


因为4点DFT还是比较麻烦,所以再继续分解。


若将N/2(4点)子序列按奇/偶分解成两个N/4点(2点)子序列。即对将x1(r)和x2(r)分解成奇、偶两个N/4点(2点)的子序列。






那么,又可表示为




因为可以进行相同的分解:



因此可以对两个N/2点的DFT再分别作进一步的分解。将一个8点的DFT可以分解成四个2点的DFT,直到最后得到两两点的DFT为止。
由于这种方法每一步分解都是按输入序列是属于偶数还是奇数来抽取的,所以称为按时间抽取的FFT算法
下图是由4个两点DFT组成的8点DFT:


下图是按8点抽取的FFT运算流图(就是最后一级了,那就是一个数的DFT,不就等于自己嘛):

这里注意观察蝶形图的系数
第一级:Wn4   (n=0)

第二:Wn2   (n=1,2)

第三:Wn1   (n=1,2,3,4)

5、IDFT的快速变换

FFT后如何变换回来呢,按照公式,1/N看成一个常量,和DFT区别是Wn(-nk)。其他一样



到此理论结束,下边开始编写程序。


1、首先观察上一个图,是通过一级一级的推算,最后得到X的,所以第一步是先初始化最左边的序列。这个楼主没什么好方法,是常规的移动位置完成

2、计算每个级组个数,定位每组的上半部分,因为下半是可以相减计算的,第一级1个,第二级是2个。。。

3、计算每个级别的k值


详情见

https://github.com/penkee/imagecal/blob/master/app-dao/src/test/java/com/dcloud/app_dao/TestFFT.java


那么二维的FFT如何实现呢?下回研究


6、二维离散FFT


通过转换,将F1看成是一维变换,y相当于上文的n。v相当于k。x是常量。那么就简化为M个x的一维FFT计算。

下边继续看,将v看成常量,即f1(x)=F1(x,v)。   那么发现其实最后变换又是一个FFT,u相当于上文的k。x相当于n


使用MFC在VS2013编写的数字图象处理软件,能够实现相当强大的功能。 BMP格式读取 保存 DFT FFT 直方图 色调均化 缩放 模糊 锐化 滤镜 形态学处理 曲线 裁剪 灰度图 彩色图 自动阈值 等等...除此之外还有很多其他小功能... 建议使用VS2013打开!!!核心代码在Bmp.cpp中!!! 更新文档: 2014年6月18日更新说明: 这次应该是上交的最后一次作业了,在今日的展示结束之后总体情况还好,但是发现了几个问题。 首先是这个程序是在win8环境下设计的,所以程序的一些大小参数以及按钮图片的位置参数是适合在win8的环境下操作,在设计报告中使用的操作系统也是win8。 而如果将该程序移动至win7系统上操作的话可以在大小与位置上会出现一些偏差,所以推荐将该程序在win8系统下运行,如果没有win8系统但是想重装的话可以找我。 然后本次更新的内容就是对设计报告中的要求的一些补充,比如图片的裁剪功能,还有一些照旧的BUG修复了。 关于这个裁剪功能,在程序中的图像裁剪中有一个说明按钮,在设计报告中有提到怎么使用的,所以在这里就不一一说明了,其实就跟在PS上用裁剪差不多,很容易用的。 关于设计的感想也写在了设计报告上了- -,这里也就不多说了。 好了这个程序算是最终完成了,撒花!师姐辛苦了~!!!!! ================================================================================================================================================================ 2014年5月13日更新说明: 这次的更新比较少,主要就是自动阈值分割图像方面的更新。 实现该操作的函数依然放在Bmp.cpp里面,里面一共使用了三种方式来决定自动阈值。 其中一种是“大津法”,函数是“OtsuThreshold”,该函数最后会返回一个阈值,该阈值就是大津法得出的阈值,具体实现方式可以在cpp文件中查看。 还有一种方法就是“迭代法”,函数是“IterationThreshold”,该函数最后会返回一个阈值,该阈值就是迭代法得出的阈值,具体实现方式可以在cpp文件中查看。 前两种方法的实现方法都如老师在PPT上所说的一样,而且运算起来非常快,基本可以说是瞬时得出。 而第三种方法是我自己写的一个方法,叫做“对半分”法,函数是“HalfCutThreshold”,该函数最后会返回一个阈值,该阈值就是对半分得出的阈值,具体实现方式可以在cpp文件中查看。 其原理就是计算出一个阈值,使到阈值处理后图片的黑色像素与白色像素的数量相等或者最接近,也就是把图片按黑白像素对半分的方法来对图像进行分割。 关于程序的使用方法,可以在鼠标右键菜单中选择“调整”->“阈值”->“高级阈值”来打开高级阈值处理的对话框。 打开对话框后,默认为最直接的自己首选阈值的方法,可以通过鼠标的左键拖动直方图中的绿色竖线来调整需要设定的阈值大小,同时右边会有该图片的预览,可以很方便操作。 如果需要使用自动阈值分割,可以在阈值方式中更改,一旦选择了“直接阈值”以外的阈值方式,程序便会自动用所选择的方法帮你计算出一个阈值,同时在直方图上会显示出该阈值的位置,还有该阈值的大小,同时预览图片也会立即更新。 值得注意的是,当你选择了自动阈值的时候,你不能再通过鼠标左键在直方图上手动调整阈值大小了哦,这个时候你只需要将阈值方式调回“直接阈值”即可重新自己调整! 除了有关作业的更新之外,这次更新还调整了图片备份的内存优化,加上了使用磁盘作为备份的空间,不过这些作为使用者的话是不需要怎么注意的嗯嗯,尽情使用即可! 最后,再次谢谢师姐能够读完这个文档,如果还有什么问题的话就联系我吧,联系方式就在软件中了欢迎点击- -,谢谢! ================================================================================================================================================================ 2014年5月6日更新说明: 这次的主要更新是形态学处理的部分,也就是膨胀、腐蚀、开与闭操作。 实现函数依然是放在Bmp.cpp这个文件里面。名字为Morphology的函数就是该形态学操作的函数。 可以通过在函数中调入不同的参数与设置使到一个函数同时实现膨胀与腐蚀的功能,而开与闭的功能只需要连续调用两次函数,并且参数不同就行了,使用非常简单。 然后就是软件的使用部分,软件的位置依然是放在Release文件夹里面,而形态学处理的按钮在“右键-调整-形态学处理-形态学运算”中,单击后就会出现形态学运算的对话框。 在对话框中会看到一个9*9的结构元素方阵,可以通过使用鼠标左键点击来改变结构元素的形状,双击鼠标为还原结构元素。 设定好结构元素后可以选择操作的四种方式,选择后便会得到处理后的图像了,十分方便。 当然,如果你的图片是彩色的,这个处理也是支持的,因为我的实现函数中把“与”操作改为“取最小值”,“或”操作改为“取最大值”,这个改动在对于二值图像的处理是一样效果的,但是也使到形态学处理适用于彩色图像了。 如果你想把彩色图片或者灰度图片二值化后在进行形态学处理,可以勾选对话框中的“二值化”选项。 值得一提的是,这个二值化是对每一层的颜色单独二值化,如果想要实现阈值效果,可以直接使用阈值功能或者转化为灰度图之后再使用对话框内的二值化,效果是一样的。 除此之外还有一个边缘提取功能,就是形态学处理中的边缘提取,实现方式就是像PPT那样操作了,这里不详细说明了,是个很简单的按钮。 在作业之外的更新有比较多,增加了“马赛克”功能(在“滤镜”中),可以很方便地对整张图片进行打码操作,至于局部打码操作可能会在之后的更新中实现,请耐心等候。 然后还更换了鼠标图案,使大家更容易知道鼠标是否已经处于图片区域中,鼠标图案是片很漂亮的叶子哦(出自KEY的AIR)。 这次更新还增加了瞬时更新鼠标所指像素点的RGB颜色值,横纵坐标,还有当前鼠标所指的颜色的显示。 在之前的版本中,如果想要获得鼠标所指的像素点的像素信息,只能通过鼠标的右键点击,这样有时候会不太方便,而现在的话在主界面就已经可以瞬时看到了,而且清晰明了简单易用。 然后还修复了模糊与中值函数的内存泄漏BUG,相信之后还会有更多的BUG等着来修复- -。 然后本次最大的更新就是!!!本软件支持Jpg格式了!师姐可以试下用这个软件打嘅Jpg格式的图片哦!这个更新简直太人性化了,以后做图像处理终于不用每次都要打开PS把Jpg转换为Bmp再操作了! 最后,再次谢谢师姐能够读完这个文档,如果还有什么问题的话就联系我吧,联系方式就在软件中了欢迎点击- -,谢谢! ================================================================================================================================================================ 2014年4月8日更新说明: 这次更新的是DTF跟FFT这两个功能,DFT的函数在Bmp.cpp的DFT里面,在里面已经加上了注释了。 而FFTfft12_ifft12.cpp这个文件里面,文件包括了一维FFT和二维FFT的函数,当然IFFT也是存在的。 关于DFT的部分,由于我在DFT的算法里面使用了Complex类与COMPLEX结构体(类包含了运算符的重载与一些常用函数),毕竟C语言并没有专用的复数运算可以调用。 所以在进行DFT运算时会不断调用类的构造函数与析构函数,这导致了进行DFT运算使用的时间比Matlab写出来的要慢很多。 虽然处理起来时间比较长,但是相比FFT的优势是可以对非2的幂数的大小的图片进行傅里叶变换,而非2幂数的FFT的话如果进行补0再运算的话会导致算出的频域是错误的频域(毕竟随意加0会直接影响到这个图片)。 然后为了加快DFT的运算,这里我使用的方法是将复数因子(e的多少次方的那个)分成横向与纵向的乘积,先算出w_h0跟w_w0,之后的其他任何一个因子其实都是他们的幂相乘。 利用这个方法先把因子算好,这样就不用在每一步都计算sin跟cos的值,使到时间变快了很多。 虽然如此,计算一幅256*256的图使用I5CPU都得需要10秒钟,所以这种算法只能将着用,因此我也懒得写IDFT了- -。 所以为了偷懒我的IDFT直接调用了IFFT的函数,也就是说,对于不是2的幂数的图片,你可以进行DFT,但是不能变回来- -。 关于FFT的部分,其速度比Matlab的FFT算法快了不是一般的多,所以在之后的滤波处理中都使用了FFT。 但是FFT的缺点是在进行FFT运算前你必须要把图片大小转成2的幂数(我的软件自带缩放哦~),当然不一定要宽高相等,256*1024也是可以的。 关于这一点我在以后可能会使用因子法来进行FFT而不用现在的radio2法,这样的话可以对非2幂数的图片进行FFT了。 不过由于时间关系,现在的程序依然只能对2的幂数的大小进行FFT,这个非常抱歉。 关于幅值与角度的显示,在FFT滤波选项中可以查看到,当然查看角度的图片并没有什么意义就是了- -。 然后无论是8位图,24位图还是32位图,DFT跟DDT都完美支持! 然后就是那个FFT滤波的对话框,这里只写出了一个雏形(毕竟这几天清明节没有时间去写,求原谅- -),其实只能看看有什么功能而已,实现的函数其实还没有写的- -。 不过这次的作业并没有要求需要写FFT之后的滤波,所以也不算没有完成作业? 最后,无论是DFT还是FFT全都是自己一个代码一个代码写上去- -,研究傅里叶变换还把信号与系统的书都拿出来了,所以这次的作业真的好辛苦啊! 所以虽然功能尚未完善,但是请体谅!最后,再次谢谢师姐能够读完这个文档,如果还有什么问题的话就联系我吧,谢谢!(为了防止联系不到我,程序里面已经加入了“联系我”按钮了~) ================================================================================================================================================================ 2014年3月31日更新说明: 鉴于上个版本的软件功能还没有完整,而且内存存在泄漏的BUG会导致长时间使用时消耗内存过大。 所以这个版本将完善了很多功能,以及优化了内存问题,基本可以实现长时间使用了嗯嗯~撒花~~~~ 首先,程序的基本操作没有变化,基本都是右键操作,这次增加了重新读取图片功能,可以很方便地对图片进行还原处理。 然后,这次的作业是直方图与滤波器的操作,这些操作可以在直方图的选项与滤波器的选项中选择。 【色调均化】直方图的操作包括色调均化(我用了半天时间终于把PS的色调均化搞懂了,原来PS的色调均化根本不需要转什么色彩空间哦!),色调均化采用的是PS的算法。 【直方图调整】除了色调均化外还有查看直方图功能,该功能可以查看图片各个颜色的直方图以及总颜色(RGB)的直方图,还可以对直方图进行拉伸变换以提高图片的对比度,具体操作只需要用鼠标在直方图上使用左键或右键移动即可。 【曲线】除此之外,还可以对直方图进行函数变化(曲线),我尽量模拟出了PS的曲线效果,但是技术有限- -,这里的曲线只允许一种颜色的函数出现10个折点,合计一共可以出现40个折点,但是基本觉得是够用得了,使用方法依然是很简单,用鼠标点击曲线某一点即可添加或者取消折点。 【平均】这次的作业还有一个就是滤波器的操作,同样在右键菜单中可以选择平均滤波的使用,具体用法很简单,这里就不说明了。 【中值】中值滤波和平均滤波的操作差不多,也不一一说明了。 【锐化】个人觉得除了拉普拉斯的锐化方式之外的锐化都很难看所以就只保留了这两种锐化方式了,将就着用把- -。 【自定义滤波器】为了能够灵活地使用滤波器,一个自定义滤波器的功能还是需要的,具体的功能就跟PS的差不多吧,不过这个功能有个缺点就是当你需要输入负数时,你需要先输入数字再在前面输入负号- -,输入分数时小数点必须快速输入(我设置了一个不太快的刷新- -),虽然现在已经找到解决办法,但是懒得改了就将就着用吧- -。 在实现函数方面,还是在Bmp.cpp与其头文件中,为了让师姐能够容易地找到各个函数的所在,我已经在函数的定义前加上它的中文功能了,相信应该很容易找到。 至于函数过程的注释,由于老师没有要求在作业中需要写出来,同时函数太多也不好写,所以就算了- -,其实算法部分的话要读懂并不那么困难的。 为了方便,我在这里还是把这次作业所需要的函数列出来把(全部函数都在Bmp.cpp中): void Bmp::SmoothAverage(int x,int y)//平均滤波 void Bmp::SmoothMedian(int x,int y)//中值滤波 void Bmp::FilterDefine(double filter[5][5],int divide,int move)//自定义滤波器 void Bmp::CurveFunction(int color,int curve[256])//实现图片的函数变换,就是曲线啦 int** Bmp::GetHistogram()//计算图片的直方图,非归一化直方图 void Bmp::HistogramEqualization()//色调均化,算法采用PS的算法 void Bmp::Histogram(int Color,int Min,int Max)//直方图函数处理,就是直方图拉伸啦 以上就是这次作业的内容啦,为了方便,我还加入了 图像缩放 彩色转灰度 阈值 等功能,基本上这个程序已经越来越完善了,接下来就是慢慢添加功能以及修改细节啦。 最后,再次谢谢师姐能够读完这个文档,如果还有什么问题的话就联系我吧,谢谢! ================================================================================================================================================================ 因为本人的兴趣,我把这次作业做的比较复杂,功能比较多,所以您在找打开保存等函数的时候可能会有点麻烦,所以在这里放一个说明文档。 首先,本程序生成的exe应用程序在Realse目录下,那个有个很漂亮的宝石图标的程序就是了! 打开程序后,您可以使用打开按钮来打开图片,也可以直接把图片用鼠标直接拖入程序中打开(个人推荐第二种,毕竟方便)。 这个程序是支持8位图24位图32位图的哦! 打开后可以使用保存按钮保存图片,使用存为文本来保存为文本文档,我的程序会把图片以颜色层数为依据来保存文本文档。 如果您想使用我加入的其他功能,可以对着图片按右键,在弹出的菜单中选中你想要的功能就是了,但是锐化功能还没写(因为时间不够- -),其他的功能可以将就用下。 如果您想要找到这个程序的cpp文件,他在这个文件夹的同名文件夹下(MFC读取显示与保存BMP图像\MFC读取显示与保存BMP图像\Bmp.cpp(.h))。 因为我把与图像有关的操作封装成一个类(C++的),用以与其他的窗口类分来容易编写。 而与本次作业有关的函数有Open(),Save(),SaveAsTxt(),三个,在Bmp.cpp中都可以找到,并且都已经注释了,您可以去那里查找观看。 当然除了这些之外,我还写了其他一些函数如反色反转滤波器等,但是没有注释(因为太懒),师姐(兄)有兴趣的话也可以去看看,当然也可以直接去程序那里看效果。 最后如果师姐(兄)有什么看不懂或者找不到函数在哪的话可以联系我帮你找(毕竟我也觉得文件写得有点长而且复杂),我的手机号码是15800037916(666542)。 谢谢师姐(兄)看完!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值