Andrew NG Machine Learning 2.2 Least square revisited浅解

     最小二乘法解方程往往适用于方程的个数大约未知量的个数,往往无精确解的情况。也就是说,因为用高斯消去法无法求解不相容方程,但确可以用最小二乘法求近似解。

    假定我们有这样一个应用

    我们想知道70后,80后,90后,对电影演技和剧本的评价。首先让一个人对一部影片的演技评分x1,对一个剧本评分x2,然后评一个总体分y。我们假定β1是演技的权重,β2是剧本的权重,并假设y=β1*x1+β2*x2。

    已知70后用户3人,对影片评价的结果如下

    x1   x2    y

    1    1     2

    1   -1     1

    1    1     3

    即,第一个人给演技打1分,剧本打1分,总体加2分,第二个人给演技打1分,剧本打-1分,总体打1分,第三个人给演技打1分,给剧本打1分,总体打3分。

    我们需要找到一个(β1,β2)使得

    β1*x1+β2*x2≈y (≈表示尽可能接近y)

    这个方程可以看作是Ax=b的一个方程,其中(A为3*2矩阵,x为2*1列向量,b为3*1列向量)

    A=   1  1 

           1 -1

           1  1

    x = β1

          β2

    b =  2

           1

           3

     b表示为A的列向量无关组,两个3维列向量构成了一个平面,只有当b落在这个平面内,方程才有精确解。如果解不存在,那么平面Ax中必然存在一点x'与b最接近,这一特殊向量使得b-Ax'垂直于Ax平面。

  即(b-Ax')⊥Ax

    (b-Ax')*(Ax)T=0   (如果uT*v=0,则向量u和v正交,uT表示u的转置)

   展开得到

   xTAT(b-Ax')=0

   AT(b-Ax')与任何x正交,说明AT(b-Ax')=0

    展开得到

    x'=(ATA)-1ATb   [和Andrew Ng的解结果一致]

   因此如果突破了求逆阵的困难,求近似解将变得简单。

    

   本文参考了《Numerical Analysis》 Timothy Sauer

 

 

    

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值