CV — 性能评价指标

12 篇文章 5 订阅

CV — 性能评价指标

对于算法模型的性能指标,看你具体的任务是什么,最基本的分类还是回归。
二分类查全、查准、f1,多分类macro/micro的查全查准f1,
回归主要看代价函数,或者算偏差和方差;
但是具体到某个特定的任务和领域有他自己用的比较多的指标


一、通用的性能评价指标

1. 混淆矩阵

预测值(P)预测值(N)
真实值(T)TPFN
真实值(F)FPTN

解释如下

  • 字母解释:

    • T / F:该样本是否被正确分类
    • P / N:该样本原本为正样本还是负样本
  • 预测结果解释:

    • TP:真正样本。预测为正样本,而且预测对了
    • TN:真负样本。预测为负样本,而且预测对了
    • FP:假正样本。预测为正样本,但是预测错了(事实上这个为负样本,对应于我们常说的 误检
    • FN:假负样本。预测为负样本,但是预测错了(事实上这个为正样本,对应于我们常说的 漏检

2. precision / recall

  1. 指标说明

    • precision:
      精度,即查准率
      precision = TP / (TP + FP)
      预测为正样本,并且确实为正样本 / 所有预测为正样本

      指标特点:
      偏向于预测准,但是会造成漏检(FN)。

    • recall:
      召回率,即查全率
      recall = TP / (TP + FN)
      预测为正样本,并且确实为正样本 / 实际上所有正样本

      指标的特点:
      偏向于 预测尽可能不要遗漏,即尽可能覆盖所有的正样本,会造成误检(FP)。
      举个例子:对于搜索引擎,为了追求提高 recall,为了覆盖尽可能多的正样本,所有查询结果中会包含比较多的无关信息。

  2. 案例说明
    以下举例说明,如何求 precision / recall
    在这里插入图片描述
    如上图所示,蓝色的框是 真实框。绿色和红色的框是 预测框,绿色的框是正样本,红色的框是负样本。(一般来讲,当预测框和真实框IOU>=0.5时,被认为是正样本。)

    对于刚开始不知道该如何划分 TP、FP、FN、TN,我这儿可以教大家一个小妙招:

    1. 对于图中标出预测框,是分类器认为的正样本 P (TP + FP) ,所以上图 TP + FP的数量为 4(即两个绿框和两个红框)。进一步确认,TP 是 分类器预测为正样本并且预测对了,所以 TP 为 2 (两个绿框);同理 FP 是分类器预测为正样本但是预测错了,图中解释即分类器画出框了但是画了了,即 误检,所以 FP 为2(两个红框)
    2. 对于 FN,分类器预测为负样本但是预测错了,在图中可以解释为,真实框我标出来了,分类器认为是负样本没标出来,即分类器 漏检,所以 FN为1(对应于图中下排第2个蓝框真实框没有检出)

    综上,precision = TP /(TP + FP)= 1/2
    recall = TP /(TP + FN) = 2/3

3. F1-measure

  1. 解释:

    综合 precision 与 recall,当 F-meansure 较高时,precision 与 recall 都较高。

  2. 计算公式:

    F-meansure = 2 / (1/precision + 1/recall )
    		   = 2 * [ precision * recall / (precision + recall)]
    

4. ROC曲线

5. AP

  1. 指标说明:
    AP(Average Precision):顾名思义AP就是平均精准度,利用不同的Precision和Recall的点的组合,AP 为 PR 曲线与坐标轴围成的面积。
    如图所示:
    在这里插入图片描述
    当我们 取不同的置信度,可以获得不同的Precision和不同的Recall,当我们取得置信度够密集的时候,就可以获得非常多的Precision和Recall。

    此时Precision和Recall可以在图片上画出一条线,这条线下部分的面积就是某个类的AP值。

  2. 指标特点:
    可能对于某一个类别的效果好,但是对于其他的类别效果不好。所以引出下面的 mAP 指标。


6. mAP

  1. mAP 指标说明:
    mAP(mean Average Precision)
    在了解 mAP 之前,我们先了解一下 AP(平均精度),AP 为 P-R曲线下方的面积。
    对于多分类问题,AP 指标可能对于某一个类别的效果好,但是对于其他类别的效果并不好,需要考察在所有类别上的平均值,所有引出了 mAP 指标。

    mAP 把每个类别的 AP 都计算一遍,再取平均值。由此可见, AP 是针对于单类别的,mAP 是针对于所有类别的

  2. mAP 算法实现:
    借助于:Cartucho/mAP 库。

    1. 库使用说明资料:
      https://github.com/Cartucho/mAP
      https://github.com/bubbliiiing/count-mAP-txt
      https://blog.csdn.net/weixin_44791964/article/details/104695264

    2. 使用步骤:

      1. 替换 input 下面的文件,detection-results、ground-truth、images-optional。

        • detection-results:
          预测结果的txt。第一个值为类别标签,第二个值为置信度,后面的值为bounding box左上角和右下角的坐标
          在这里插入图片描述

        • ground-truth:
          真实框的标注信息。第一个值为标注的类别标签,后面值为标注框左上角和右下角的坐标。
          在这里插入图片描述

        • images-optional:
          图片文件,方便进行可视化,可以没有这个文件。
          在这里插入图片描述

      2. 准备好以上文件之后,直接运行 main.py 文件即可。
        在这里插入图片描述


二、目标检测领域

1. IoU

  1. 指标说明
    IoU:预测框和真实框的交集 / 预测框与真实框的并集
    在这里插入图片描述

IoU的取值范围为:[0,1],衡量bounding box是否准的指标。
当预测框与真实框重叠时,IoU=1

  1. 指标计算:
    参考我的另外一篇博客:https://blog.csdn.net/pentiumCM/article/details/109962380


参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值