Anaconda 中python32位和64位并存,切换

文章详细介绍了如何在Windows上安装64位Python的虚拟环境,包括切换到64位平台、创建和激活虚拟环境,以及安装64位的cvxpy库。此外,还讲解了如何配置清华镜像加速下载,并确保JupyterNotebook能识别和使用虚拟环境中的库。最后,提到了处理可能出现的问题和移除虚拟环境的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、背景

2、前期信息掌握

3、安装64位python的虚拟环境

(1)切换到64位平台及环境

(2)创建虚拟环境来安装64位的python

(3)激活虚拟环境

(4)退出虚拟环境

4、安装64位版本的cvxpy

 (1)为了下载快速,改成清华镜像下载源

(2)按照步骤下载cvxpy依赖库

 5、Jupyter notebook能用上虚拟环境


1、背景

在之前的Windows安装凸优化库cvxpy文章

(35条消息) Windows安装凸优化库cvxpy_windows安装cvxpy_persistlau的博客-CSDN博客https://blog.csdn.net/persistlau/article/details/130255798

由于有的人电脑本身是64位操作系统,

但是在运行pip install ecos-2.0.10-cp38-cp38-win_amd64.whl 时提示版本不支持,原因是

安装Anaconda时选择的是32位。虽然理论上可以安装相应32位版本的whl文件,但是其中

在python3.7后就没有32位系统提供选择了,也以此确定需要切换到python64位平台。所以请进行以下操作,一是针对64位版本的cvxpy库的安装,二是实现多版本的python应用管理。 

2、前期信息掌握

(1)检查或更改conda设置

通过anaconda prompt,输入 conda info ,显示conda信息并检查平台

可以看到现在用的是32位的。

(2)检查Python环境

prompt中输入python,检查当前环境中的Python是64位还是32位


" MSC v.1916 32位"为32位," MSC v.1916 64位"为64位。

3、安装64位python的虚拟环境

(1)切换到64位平台及环境

第一步:set CONDA_FORCE_32BIT=0 ,从下图可知没生效。

在网络上查找方法prompt中输入set CONDA_FORCE_32BIT=0,依然是32位平台,并没有完成64位的切换

第二步:set CONDA_SUBDIR=win-64,生效

prompt中输入set CONDA_SUBDIR=win-64

综合前两步,为了成功在本来安装32位anaconda的情况下,能够安装使用64位python,在prompt中运行以下两句命令:

set CONDA_SUBDIR=win-64

set CONDA_FORCE_32BIT=0

后,即在切换到64位平台。

(2)创建虚拟环境来安装64位的python

prompt中输入conda create -n python39_64 python=3.9

conda create -n python39_64 python=3.9

"""
说明:“ python39_64”是自己命名的,按照自己接下来虚拟环境的python版本即可,
由于本次python是在切换到64位下装的,
因此conda会自动下载64位的python,“python=3.9”按自己需求下载
"""

成功的信号是进入下列,输入y,

(3)激活虚拟环境

激活上一步创建的虚拟环境

conda activate python39_64

目的是在虚拟环境中能用64位系统,

prompt中输入python,查看当前python版本。

发现虚拟环境安装的python是64位的,下图这是成功的意思,拥有不同环境下不同版本不同位数的python,一个是base默认环境下的python,图中是python3.8版本,32位;一个是虚拟环境下python39_64下的python,图中是python3.9版本,64位.

 conda env list可以看到目前有的环境

需要注意,下面描述的是中途可能遇到的问题

如果发现虚拟环境安装的python不是64位的。则需要先执行命令conda deactivate退出虚拟环境,conda remove -n python39_64 --all 删除刚创建的虚拟环境,再试着重新操作(1)(2)步骤下载64位python。

至此,已经完成python32位和64位并存。

(4)退出虚拟环境

执行命令conda deactivate

接下来的操作是安装64位版本的cvxpy

4、安装64位版本的cvxpy

 (1)为了下载快速,改成清华镜像下载源

执行下列命令:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

执行pip install 就会在清华镜像里面下载安装,速度比官网下载快不少。

(2)按照步骤下载cvxpy依赖库

1.先激活已安装的64位python的虚拟环境 conda activate python39_64

2.按照Windows安装凸优化库cvxpy_windows安装cvxpy_persistlau的博客-CSDN博客WIN系统凸优化库cvxpy成功安装并运行https://blog.csdn.net/persistlau/article/details/130255798

步骤(1、下载whl文件到新建的文件夹 2、切换到该文件夹3、pip install )

安装cvxpy,这个时候去安装64位就可以进行了

3.调用python,成功应用cvxpy解决规划问题。

至此,在虚拟环境64位python下可以调用cvxpy库。

 5、Jupyter notebook能用上虚拟环境

(1)先激活想要添加的虚拟环境,prompt执行conda activate python39_64,执行以下两句,作用是jupyter notebook能够用上虚拟环境的库(因为我们cvxpy是64位):

conda install -n python39_64  ipykernel

python -m ipykernel install --user --name python39_64 --display-name "Python39_64"

参考来自:

Jupyter notebook系列(1):安装与使用(安装,虚拟环境的联接使用,windows远程连接linux的jupyter)_Jupyter notebook系列(1):安装与使用(安装,虚拟环境的联接使用,windows远程连接linux的jupyter)_404技术社区

(2)退出虚拟环境conda deactivate后,调用jupyter notebook,在新建时选择我们虚拟环境的内核

这样在jupyter notebook里面也可以调用cvxpy库。

补充:如果发现jupyter notebook 出现了虚拟环境的名称,但是想调用的一些库,比如cvxpy失败的

原因在于:执行

python -m ipykernel install --user --name python39_64 --display-name "Python39_64"

没有在虚拟环境下执行,如下图(base)的意思是默认环境下,这种就会调用不了虚拟环境装好的cvxpy

只要改成在虚拟环境执行即可,

 (3)移除虚拟环境

想把已经添加成功的虚拟环境python39_64删除,prompt输入:

jupyter kernelspec remove python39_64

如果没成功可以先激活想要删除的虚拟环境,再输入jupyter kernelspec remove python39_64。

Anaconda中,如果你想要计算一个数据集的中数,你可以使用Pandas库进行操作。首先,你需要确保你已经安装了Pandas库并创建了一个合适的环境。你可以按照以下步骤来进行操作: 1. 首先,你需要添加清华镜像来加快Anaconda的下载速度。可以使用以下命令添加清华镜像: ``` conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/ ``` 2. 然后,你需要创建一个新的环境,并指定Python的版本。可以使用以下命令创建一个名为"python39_64"的环境,并选择Python 3.9的64版本: ``` conda create -n python39_64 python=3.9 ``` 3. 激活新创建的环境。可以使用以下命令激活名为"python39_64"的环境: ``` conda activate python39_64 ``` 4. 确保你的Excel文件于应用程序的根目录中。这样你就可以在Flask应用程序中使用Pandas库来读取Excel文件并计算中数了。 总结起来,要在Anaconda中计算一个数据集的中数,你需要先安装Pandas库,并创建一个合适的环境。然后,在应用程序的根目录中找到Excel文件,并使用Pandas库进行中数的计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Anaconda基本语句以及常用指令](https://blog.csdn.net/qq_45138078/article/details/128679744)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [estimacion_media:估计中数](https://download.csdn.net/download/weixin_42120550/18372799)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Anacondapython3264并存切换](https://blog.csdn.net/persistlau/article/details/130562754)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值