[自动控制原理】实验5利用simulink绘制高阶系统的响应曲线,分析稳态误差

实验5基于Simulink控制系统的稳定误差分析

一、实目的:

1、通过学习本实验内容,学生能够掌握Simulink仿真环境进行控制系统稳态误差分析的方法;

2、研究系统在不同典型输入信号作用下,稳态误差的变化。

二、实验步骤:

1

四、实验总结:

利用simulink绘制高阶系统的典型输入型号的响应曲线,研究系统在不同典型输入信号作用下,稳态误差的变化。

(1)阶跃输入响应

已知一个单位负反馈系统开环传递函数为G(s)=K/s(0.1s+1),分别作出K=5和K=50时,系统单位阶跃响应曲线并求单位阶跃响应稳态误差,总结实验结论。

图 5-1 基于Simulink I型系统单位阶跃响应结构图

1、(1)K=5时I型系统阶跃输入误差响应曲线:

K=50时I型系统阶跃输入误差响应曲线:

结论:稳态误差为零。 随着K增大,响应过程变快,但终值不变。

(2)斜坡输入响应

仍然上述系统,分别作出K=0.2   B和K=1时,系统单位斜坡响应曲线并求单位斜坡响应稳态误差,总结实验结论。

图 5-2基于Simulink I型系统单位斜坡响应结构图

(2)K=0.2时I型系统斜坡输入误差响应曲线:

 

K=1时I型系统斜坡输入误差响应曲线:

结论: K越大,响应越快,稳态误差不变

2、研究系统型次不同,稳态误差的变化。

(1)0型系统在典型输入信号作用下的稳态误差

将上述系统中的积分环节改换为一个惯性环节,开环增益改为1,系统变成0型系统。

图5-3基于Simulink 0型系统单位阶跃响应误差分析图

在输入端分别给定单位阶跃信号和单位斜坡信号,重新仿真运行,在示波器 Scope 中观察系统响应曲线,并读出稳态误差,总结实验结论。

(1)输入信号为Step的曲线图:

(2)输入信号为Ramp的曲线图:

 (2)II型系统在典型输入信号作用下的稳态误差

将上述系统中开环增益改为1,在其前向通道中再增加一个积分环节,系统变成II型系统。在输入端分别给定单位阶跃信号和单位斜坡信号,重新仿真运行,在示波器 Scope 中观察系统响应曲线,并读出稳态误差,总结实验结论。最后,对系统型别、稳态误差和输入信号形式进行归纳,填写表5-1。

图 5-4基于Simulink II型系统单位阶跃和单位斜坡响应误差分析图

(2)输入为Step时的曲线图:

输入为Ramp时的曲线图:

结论:

振荡系统,但最终会趋于稳定

表5-1 输入信号作用下的稳态误差

系统

阶跃输入r(t)=R.1(t)

斜坡输入r(t)=Rt

类别

位置误差e=R/(1+K)

速度误差e=R/K

0

R/1+k

无穷

I

0

R/K

II

0

0



关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值