【自动控制原理】实验6 基于Matlab控制系统的根轨迹及其性能分析 7 系统频率特性及稳定性分析 8 系统频率特性及稳定性分析(上海理工大学)

目录

实验6 基于Matlab控制系统的根轨迹及其性能分析

1、绘制系统的零极点图

3、根据控制系统的根轨迹,分析控制系统的性能。

实验 7 系统频率特性及稳定性分析

1、绘制控制系统 Nyquist 图

2、根据 Nyquist 图分析系统稳定性

实验8 系统频率特性及稳定性分析

2、校正设计案例二


实验6 基于Matlab控制系统的根轨迹及其性能分析

一、实验目的:

1、通过学习本实验内容,学生能够掌握使用 MATLAB绘制控制系统零极点图和根轨迹图的方法;

2、学会分析控制系统根轨迹的一般规律;

3、能够利用根轨迹图进行系统性能的分析;

4、研究闭环零极点对系统性能的影响。

二、实验步骤:

1、绘制系统的零极点图

(1)已知系统的开环传递函数G(s)H(s)=(s^2+5s+5)/s(s+1)(s^2+2s+2)绘制系统的零极点图,读取数据填入表6-1中,总结规律。

matlab代码:

num=[1 5 5];den=[1 ,3 ,4, 2 ,0];sys=tf(num,den);figure;pzmap(sys)

根轨迹曲线

表6-1 系统零极点图

零极点阻尼比ζ超调量Mp振荡频率wn
零点1=-1.38101.38
零点2=-3.62103.62
极点1=-1101
极点2=0-100
极点3=-1+i0.7074.321.41
极点4=-1-i0.7074.321.41

(2)若已知系统开环传递函数G(s)H(s)= k/s(s+1)(s+2),绘制控制系统的根轨迹图,并完成填空:

matlab代码:

clear all; close all;num=[1];den=[1 3 2 0];sys=tf(num,den);rlocus(sys)

根轨迹曲线:

填空

(1) 根轨迹有__ 3__条。

(2) 位于负实轴上的根轨迹(-∞,2)和(1,0)区段,其对应的阻尼ζ_____ 1_____,超调量为__ 0____,系统处于_ 临界阻尼 __状态,而且在远离虚轴的方向,随着增益K增大,振荡频率ω__ 增加___,系统动态相应衰减速率___增加 _____。

(3) 在根轨迹的分离点为___-0.423 ____,对应于阻尼ζ___1 ____,超调量为_0_ __,开环增益K=__ __,系统处于____ 临界阻尼_____状态。

(4) 根轨迹经过分离点后离开实轴,朝5右半平面运动。当根轨迹在分离点与虚轴这个区间时,闭环极点由___ -0.423____变为____0 ____,对应阻尼0<ζ<1,系统处于__ _欠阻尼___状态,其动态响应将出现__减幅_ ___振荡,而且越靠近虚轴,增益K越大,阻尼越小,超调量_ 增加 _,振荡频率ω__增加 __。

(5) 当根轨迹与虚轴相交时,闭环根位于虚轴上,闭环极点是一对纯虚根__+1.41i,-1.41i_ ____,阻尼___0 ___,超调量达到__100% ____,系统处于___ 临界阻尼___状态,其动态响应将出现__ 等幅____振荡。此时称为临界稳定增益K2=_ __6___。

3、根据控制系统的根轨迹,分析控制系统的性能。

已知一负反馈系统的开环传递函数为G(s)H(s)= k(s+3)/s(s+2)

(1) 绘制其根轨迹图,确定根轨迹的分离点与相应的增益。

使用代码:

clear all; close all;num=[1 3];den=[1 2 0];sys=tf(num,den);rlocus(sys)

得到根轨迹图:

(2) 确定系统呈现欠阻尼状态时的开环增益范围。
0.536<k<7.46

(3) 确定系统最小阻尼比时的闭环极点。

Z=0时的阻尼比最小

加深了我对系统根轨迹图绘制法则的了解,了解系统阻尼比等概念。

实验 7 系统频率特性及稳定性分析

一、实验目的:

1、通过学习本实验内容,学生能够掌握频率特性的测量方法;

2、能够分析控制系统 Nyquist 图的基本规律;

3、掌握使用 MATLAB 绘制控制系统 Bode 图和分析稳定性的方法

二、实验步骤:

1、绘制控制系统 Nyquist 图

已知 G(s)H(s)=0.5/(s^3+2s^2+s+0.5), 计算系统特征根,并绘制 Nyquist 图,判定系统的稳定

性.

matlab使用代码:

num=[0.5];den=[1 2 1 0.5];

G=tf(num,den);pole(G)

nyquist(G)

得到结果及奈氏图如下:

ans =

-1.5652 + 0.0000i

-0.2174 + 0.5217i

-0.2174 - 0.5217i

论:系统不具有正实部的根,且奈氏图越过(-1,0)的次数为 0,系统稳定。

2、根据 Nyquist 图分析系统稳定性

(1)已知系统开环传递函数为 G(S)=K(T1s+1)/s^2(T2s+1), 分别作出 T1>T2 和 T1<T2 时的 Nyqusit

图, 判定系统的稳定性,比较两图的区别与特点。(T1 和 T2 可以自拟参数)

解:T1>T2 时,

使用代码: num=[20 10];num=[1 1 0 0];G=tf(num,den);figure();nyquist(G);grid on

结论:系统逆时针包围临界点圈数等于开环正实部极点数,系统稳定

当T1<T2 时,

使用代码:

num=[1 1];num=[6 1 0 0];G=tf(num,den);figure();nyquist(G);grid on

结论: 系统正穿越临界点的圈数不等于开环正实部极点数,系统不稳定


(2)已知系统开环传递函数为 G(S)H(s)=K/s^v(s+1)(s+2) (v 和 K 可以自拟参数)

令 v=1,

使用代码:

num=[1 ];num=[1 3 2 0];G=tf(num,den);figure();nyquist(G);grid on

结果截图为:

结论: 当 k 小于临界值时,系统稳定,当 k 大于临界值时,系统不稳定。

令 k=1,

使用代码:

num=[1 ];num=[1 3 2 0];G=tf(num,den);figure();nyquist(G);grid on

结论: 当 v=1 时,系统稳定,当 v 大于 1 时,系统不稳定。

3、绘制控制系统 Bode 图

(1)已知控制系统开环传递函数 G(s)H(s)=10/( s2+2s+10)绘制其 Bode 图,判定系统的稳定性。

使用代码:

num=[10 ];num=[1 2 10 ];G=tf(num,den);figure();bode(G);grid on

结果截图:

结论: 裕度为正,系统稳定

(2)已知单位负反馈系统的开环传递函数为 G(s)=2/s(s+1)(s+2)绘制其 Bode 图,求系统的稳定裕

度。

使用代码:

num=[2 ];num=[1 3 2 0 ];G=tf(num,den);figure();bode(G);grid on

结果截图:

结论:裕度为正,系统稳定

4、根据 Bode 分析系统稳定性

(1)系统开环传递函数 G(s)= K/s(0.5s+1)(.1s+1),尝试 k 取不同的值时,分析系统的稳定性,找

出系统的临界稳定时的增益 K。

使用代码: num=[1 ];num=[0.5 1.5 1 ];G=tf(num,den);figure();bode(G);grid on

结果截图:

(2)已知系统开环传递函数 G(s)= k(s+1)/ s^2(0.1s+1),令 K=1 作 Bode 图,应用频域稳定判据确

定系统的稳定性,并确定使系统获得最大相位裕度 y 的增益 K 值。

使用代码:

num=[1 1];num=[0.1 1 0 0 ];G=tf(num,den);figure();bode(G);grid on

让我学会正确运用奈氏图和 BODE 图判定系统稳定性

实验8 系统频率特性及稳定性分析

一、实验目的:

1、通过学习本实验内容,学生能够掌校正设计方法;

2、巩固掌握使用 MATLAB 绘制控制系统 Bode图和分析稳定性的方法。

二、实验步骤:

1、校正设计案例一

已知系统开环传递函数G()=1/s^2(s+10)

试用根轨迹编辑器对系统进行补偿设计,使系统单位阶跃给定响应一次超调后就衰减;并在根轨迹编辑器中观察根轨迹图,以及系统阶跃响应曲线

步骤:

(1)调用rltool {()函数,打开带系统的根轨迹编辑器;


(1) 输入代码:

>> num=[1];den=[1 10 0 0 ];G=tf(num,den);rltool(G)

结果截图:

结论:发散

(2)确定控制系统的结构,选择其中的控制器模块(s)进行参数配置;

(2) 选中模块C进行参数配置

改变增益,扔发散

结论:有变化,在无穷处仍发散震荡

(3)在补偿器编辑窗口可动态调整增益大小附加零点或极点关键步骤

(3) 添加一个零点z=-10,

结论:添加零点,发散震荡,在无穷处衰减

(4)在根轨迹编辑器窗口中系统观察根轨迹

(5)在根轨迹编辑器窗口中系统观察阶跃响应曲线,读取动态性能指标;

(6)重复进行步骤(3)~(5),可以设计出符合题意要求的系统。多次尝试,可以掌握补偿增益和附加实数(或复数)零极点之间匹配的规律。

由此减小零点的绝对值大小z=-1,并将增益增大(K=30);

截图:

函数阶跃超调一次后就衰减

结论

通过添加零点z=-1,改变增益,可以进行系统校正,设计出符合题意的系统。

2、校正设计案例二

已知系统开环传递函数G(s)=10/(0.5s^2+s)

要求用根轨迹法设计超前校正装置Gc,要K>20,希望该单位负反馈系统的时域性能指标M<15%,1.5

输入代码:num=[10];den=[0.5 1 0 ];G=tf(num,den);rltool(G)

得到结果截图:

我们可以看到系统已经可以达到稳定状态,但是超调量48.5不满足题设要求,于是配置参数K=21,并新增一个零点z=-1;此时系统为过阻尼状态。

截图:

我们 因此将z值缩小10倍,即z=-10,得到结果:

增加零点和改变系数可以调节系统阻尼,调节系统稳定性

让我知道了增益系数k和添加零点对系统稳定性的影响


资料仅供学习使用

编者能力有限,如有错误欢迎留言交流

编者的其他专栏:

C语言

单片机原理

模式识别原理

数字电子技术

自动控制原理

模拟电子技术

数据结构

线性代数

复变函数与积分变换

 概率论与数理统计

高等数学

大学物理

电路原理

关注编者了解更多

MATLAB中,你可以通过以下步骤和代码来使用根轨迹法设计超前校正装置,以满足给定的性能指标: **步骤1: 导入所需库** ```matlab % 加载根轨迹工具箱 if ~isToolboxAvailable('robust') error('Robust Control Toolbox is required for this task.'); end ``` **步骤2: 定义原系统的传递函数 G(s)** ```matlab G = tf([10], [0.5, 1]); ``` **步骤3: 设计超前校正装置 K(s)** 为了保持K > 20,你需要找到一个适当的τ (滞后项的比例系数) 和 T (积分项的时间常数)。可以使用`place`函数来尝试不同的组合,直到满足K > 20。 ```matlab k_min = 20; options = rtp_Options; % 初始化根轨迹选项 options.RootMargin = Inf; % 设置根轨迹的裕度 [tau, Ts] = place(G, k_min, 'Pole-placement', options); K = tf(k_min * (tau*s + 1), Ts * s + 1); ``` **步骤4: 检查性能指标** 现在需要计算校正后的闭环系统H(s) = G(s) * K(s),并检查超调量、调节时间和定性。 ```matlab H = feedback(G*K, 1); % 构建闭环系统 % 计算性能指标 stepInfo = stepinfo(H); % 超调量、调节时间和上升时间 overshoot = stepInfo.Overshoot; settling_time = stepInfo.SettlingTime; rise_time = stepInfo.RiseTime; % 判断是否达到目标 if overshoot > 15 || settling_time > 1.5 || rise_time > 1.5 disp(['性能指标未达到:超调量 ', num2str(overshoot*100), '%, 调节时间 ', num2str(settling_time), 's, 上升时间 ', num2str(rise_time), 's']); else disp('性能指标达到要求!'); end ``` 如果上述步骤无法直接得到满足条件的结果,你可能需要调整`place`函数的参数或优化其他设置。在这个过程中,你可能需要循环迭代,直到性能指标符合需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值