自动控制原理——使用matlab进行控制系统的建模、仿真

本文详细介绍了控制系统中的传递函数模型(TF、ZPK、SS)、状态空间模型的表示及其转换,以及时域响应(单位脉冲和阶跃响应)和频域分析(Bode图和奈奎斯特图)的重要性。这些概念和技术在工程设计和系统稳定性评估中起关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、控制系统基本模型

1.1 传递函数模型(TF)

num = [13,4,0,6];
den = conv([1,2,3],[5,3,16,1,7]);
tf(num,den)

输出: 

ans =
 
                   13 s^3 + 4 s^2 + 6
  -----------------------------------------------------
  5 s^6 + 13 s^5 + 37 s^4 + 42 s^3 + 57 s^2 + 17 s + 21
 
Continuous-time transfer function.

1.2 零极点传递函数模型(zpk)

       在控制系统中,我们常常使用ZPK(零点-极点-增益)模型来描述系统。在ZPK模型中,零点、极点和增益代表以下含义:

1. 零点:这是模型传递函数分子多项式的根,代表系统在没有输入时其输出将逼近于0的条件。零点会影响系统的频率响应和系统的相位,可有效地改变系统的性能。

2. 极点:这是模型传递函数分母多项式的根,表示系统开环的自然响应。所有的极点都必须在z平面的单位圆圈内,系统才是稳定的。极点对系统的稳定性和响应过程有显著影响。

3. 增益:在ZPK模型中,增益是一个标量值,表示了系统的放大或衰减程度。通过调整增益,我们可以直接调节系统的输出结果,这对于许多工程应用十分有用。

       零点、极点和增益决定了系统的动态行为,包括系统的稳定性、频率响应和瞬态响应。通过改变零点、极点和增益,我们可以调整系统的行为以满足特定需求。

clear ;clc;
z = [-3,-9];
p = [-2,-4,-5];
k = 7;
zpk(z,p,k)

 输出:


ans =
 
    7 (s+3) (s+9)
  -----------------
  (s+2) (s+4) (s+5)
 
连续
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值