一、控制系统基本模型
1.1 传递函数模型(TF)
num = [13,4,0,6];
den = conv([1,2,3],[5,3,16,1,7]);
tf(num,den)
输出:
ans =
13 s^3 + 4 s^2 + 6
-----------------------------------------------------
5 s^6 + 13 s^5 + 37 s^4 + 42 s^3 + 57 s^2 + 17 s + 21
Continuous-time transfer function.
1.2 零极点传递函数模型(zpk)
在控制系统中,我们常常使用ZPK(零点-极点-增益)模型来描述系统。在ZPK模型中,零点、极点和增益代表以下含义:
1. 零点:这是模型传递函数分子多项式的根,代表系统在没有输入时其输出将逼近于0的条件。零点会影响系统的频率响应和系统的相位,可有效地改变系统的性能。
2. 极点:这是模型传递函数分母多项式的根,表示系统开环的自然响应。所有的极点都必须在z平面的单位圆圈内,系统才是稳定的。极点对系统的稳定性和响应过程有显著影响。
3. 增益:在ZPK模型中,增益是一个标量值,表示了系统的放大或衰减程度。通过调整增益,我们可以直接调节系统的输出结果,这对于许多工程应用十分有用。
零点、极点和增益决定了系统的动态行为,包括系统的稳定性、频率响应和瞬态响应。通过改变零点、极点和增益,我们可以调整系统的行为以满足特定需求。
clear ;clc;
z = [-3,-9];
p = [-2,-4,-5];
k = 7;
zpk(z,p,k)
输出:
ans =
7 (s+3) (s+9)
-----------------
(s+2) (s+4) (s+5)
连续