【数字图像处理】第8章 图像复原,图像退化模型,无约束复原,逆滤波复原

关注作者了解更多

我的其他CSDN专栏

毕业设计

求职面试

大学英语

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

目录

8.1 图像退化机理

1.什么是图像退化?

2. 图像退化原因

3.图像退化的处理方法

4. 什么是图像复原?

5. 图像增强和图像复原的区别?

8.2 图像退化模型

1. 一维退化模型

2. 二维离散退化模型

3.退化参数的确定

4.点扩展函数的确定

8.3 无约束复原

8.4 逆滤波复原方法

8.5 有约束复原


8.1 图像退化机理

什么是图像的退化  

图像退化原因  

图像退化的处理方法  

什么是图像复原  

图像增强和图像复原的区别

1.什么是图像退化?

   在景物成像过程中,由于目标的高速运动、散射、成像系统畸变和噪声干扰,致使最后形成的图像存在种种恶化,称之为“退化”。    

  退化的形式有图像模糊或图像有干扰等。

2. 图像退化原因

成像系统镜头聚焦不准产生的散焦;

相机与景物之间的相对运动;

成像系统存在的各种非线性因素以及系统本身的性能 ;

射线辐射、大气湍流等因素造成的照片畸变;

成像系统的像差、畸变、有限带宽等;

底片感光图像显示时会造成记录显示失真;

成像系统中存在的各种随机噪声 ;

3.图像退化的处理方法

 无论是由光学、光电或电子方法获得的图像都会有不同程度的退化;退化的形式多种多样,如传感器噪声、摄像机未聚焦、物体与摄像设备之间的相对移动、光学系统的相差、成像光源或射线的散射等;      

   如果我们对退化的类型、机制和过程都十分清楚,那么就可以利用其反过程来复原图像。

4. 什么是图像复原?

  图像复原是通过对图像退化的过程进行估计,并补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或原始图像的最优估值,从而改善图像质量的一种方法。

  图像复原是图像退化的逆过程。

  典型的图像复原方法:根据图像退化的先验知识建立退化模型,以此模型为基础,用滤波等手段进行处理,使复原图像符合一定的准则,达到复原图像的目的。

5. 图像增强和图像复原的区别?

 图像增强是为了突出图像中感兴趣的特征,增强后的图像可能与原始图像存在一定的差异。     评判图像增强质量好坏的是主观标准。

  图像复原是针对图像退化的原因做出补偿,使恢复后的图像尽可能接近原始图像。     评判图像复原质量好坏的是客观标准。

8.2 图像退化模型

1)线性特性

2)位置不变性

H(x,y)概括了图像退化的物理过程

连续退化模型几点说明:

 (1)若线性成像系统的冲击响应是理想的,即Hδ(x-α,y-β)=δ(x-α,y-β),那么形成的图像g(x,y)就和原始图像一样,不产生模糊。

(2)   若冲激响应是非理想的,则造成图像模糊。    通常把成像系统考虑成为线性位移不变系统,即

(3)退化的另一种现象,噪声污染,假定噪声是加性的,那么退化模型为

 傅氏变换

  数字图像讨论的是离散的图像函数,因此需要对连续模型进行离散化处理,即将连续模型中的积分以求和的形式表示。

1. 一维退化模型

  对f(x)及h(x)均匀采样,样本数分别为A及B,即:

 f(x)   x=0,1,…,A-1            

 h(x)   x=0,1,…,B-1

离散循环卷积是针对周期函数定义的

如果f(x)及h(x)都是具有周期为N的序列,那么离散的退化模型可表示为:

 为了不使离散循环卷积时发生相互重叠现象,必须对f (x)和h (x)进行周期延拓.

则fe(x)和he(x)可分别表示为:

f e (x)、 he(x)均是长度为M的周期序列,其卷积为

g e (x)也是长度为M的周期序列。

若把f e (x)、 g e (x) 表示成向量形式:

循环卷积写成矩阵形式:

H是M*M的矩阵。

利用周期特性:he(x)=he(x+M)可得

循环矩阵:方阵,下一行是上一行循环右移一位的结果.

2. 二维离散退化模型

 f (x,y)、h (x,y)均匀采样,样本数分别为A*B,C*D。周期性地延拓成M*N样本

则循环卷积为

矩阵形式 :

H是分块循环矩阵。

若n是MN 维噪声,则退化模型为:

3.退化参数的确定

 退化参数:          

h(x,y)          n(x,y)    

图像恢复:    

对原始图像作出尽可能好的估计。     已知退化图像,要作这种估计,须知道退化参数的有关知识。

4.点扩展函数的确定

1)  运用先验知识:    

大气湍流    

光学系统散焦    

照相机与景物相对运动    

根据模糊的物理过程(先验知识)来确定h(x,y)或H(u,v)。

(1)长时间曝光下大气湍流造成的转移函数

C是与湍流性质有关的常数。

(2)光学散焦

d是散焦点扩展函数的直径; J1(•)是第一类贝塞尔函数。

(3)照相机与景物相对运动    设T为快门时间,x0(t),y0(t)是位移的x分量和y分量

5. 噪声的确定

需知道n(x,y)的统计性质,以及n(x,y)与f(x,y)之间的相关性质。        

一般假设图像中的噪声是一类白噪声。      

  白噪声:图像平面上不同点的噪声是不相关的,其谱密度为常数。    

当噪声与图像不相关时,噪声是加性的。         在有些情况下噪声大小确实与图像信号有关。如以下的乘性白噪声

8.3 无约束复原

无约束复原方法  

逆滤波复原  

有约束复原(最小二乘类复原)

 图像复原的主要目的是当给定退化的 图像g(x,y)及系统h(x,y)和噪声n(x,y)的 某种了解或假设,估计出原始图像f(x,y)。 其代数表达式即:    

g=Hf+n  

 因此,可用线性代数中的理论解决复原 问题。

复原时以消除噪声为目的,可将上式改为:\


在最小二乘方意义上说,希望找到一个   使

为最小。

这种方法要求知道成像系统的点扩散函数H.

8.4 逆滤波复原方法

      逆滤波复原基本原理

\

逆滤波复原举例

复原图像频谱


(1)逆滤波的应用条件是退化图像g(x,y)是信噪比较高的图像。

(2)如果H (u ,v)有许多零点,必然使得复原的结果受到极大影响。

(3)如果H (u ,v)不为零但是有非常小的值,也即病态条件,也会使复原效果受到影响。

8.5 有约束复原

   最小二乘类约束复原

性能指标J (f )如下:

令γ=1/λ

维纳滤波原理是使   和 的均方误差最小实现的滤波方法

      维纳滤波法

维纳滤波的基本原理是将原始图像f和对原始图像   的 估计看作为随机变量,按照使f和估计值   之间的均方 误差达到最小的准则实现图像复原。

均方误差如下:

若γ=1,则称为维纳滤波器

本章主要知识点 

什么是图像的退化  

图像的退化及复原模型  

无约束复原基本原理  

逆滤波方法基本原理  

几种有约束复原基本原理  

匀速直线运动模糊复原  

几何畸变的三角形校正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值