毕设日志——Fast RCNN

https://blog.csdn.net/shenxiaolu1984/article/details/51036677

同样使用最大规模的网络,Fast RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间。

Fast RCNN方法解决了RCNN方法三个问题:

  • 问题一:测试时速度慢

RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

  • 问题二:训练时速度慢

原因同上。
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

  • 问题三:训练所需空间大

RCNN中独立的分类器和回归器需要大量特征作为训练样本。
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

特征提取网络

基本结构

图像归一化为224×224直接送入网络。

前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域((图像序号×1+几何位置×4)

在这里插入图片描述

roi_pool层的测试(forward)

roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层。

roi_pool层的训练(backward)

网络参数训练

参数初始化

在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。 其余参数随机初始化。

分层数据

在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。
实际选择N=2, R=128。

分类与位置调整

数据结构

第五阶段的特征输入到两个并行的全连层中(称为multi-task)。
在这里插入图片描述

  • cls_score层用于分类,输出K+1维数组p,表示属于K类和背景的概率。
  • bbox_prdict层用于调整候选区域位置,输出4*K维数组t,表示分别属于K类时,应该平移缩放的参数。
代价函数

loss_cls层评估分类代价。由真实分类u对应的概率决定:
L c l s = − l o g p u L_{cls}= -logp_{u} Lcls=logpu
loss_bbox评估检测框定位代价。比较真实分类对应的预测参数tu和真实平移缩放参数为v的差别:
L l o c = ∑ i = 1 4 g ( t i u − v i ) L_{loc}= \sum_{i=1}^{4}g(t_{i}^{u}-v_{i}) Lloc=i=14g(tiuvi)
g为Smooth L1误差.

  • 总代价为两者加权和,如果分类为背景则不考虑定位代价。
  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值