毕业设计:复杂背景下的车道线检测系统 深度学习 机器视觉

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 Faster RCNN 模型

2.2 车道线检测

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯复杂背景下的车道线检测系统

设计思路

一、课题背景与意义

        车道线检测系统在自动驾驶、智能交通监控和驾驶辅助系统等领域具有重要的应用价值。然而,传统的车道线检测方法在复杂背景下往往存在较大的挑战,如光照变化、阴影、模糊不清的车道线等。复杂背景下车道线检测系统的研究变得尤为关键。为自动驾驶和交通监控等领域提供更可靠的解决方案。

二、算法理论原理

2.1 Faster RCNN 模型

        Faster R-CNN(是一种常用的目标检测算法,广泛应用于车道线检测等计算机视觉任务中。Faster R-CNN采用端到端的检测框架,可以直接从原始图像中检测和定位车道线,无需手动提取特征或设计复杂的流程。 Faster R-CNN结合了区域建议网络(RPN)和目标分类网络,能够实现高准确率的目标检测,能够准确地检测到车道线的位置和形状。 通过在不同尺度的特征图上进行检测,可以处理不同大小的车道线,提高了检测的鲁棒性和适应。 

毕业设计:复杂背景下的车道线检测系统 深度学习 机器视觉

        Faster R-CNN是一种目标检测算法,它使用了全新的RPN网络来替代Selective Search算法,以实现自动的候选框提取。在Faster R-CNN中,输入任意比例为P×Q的图像首先被放缩为固定大小的M×N,然后送入卷积层网络进行特征提取。接下来,通过共享特征层,RPN网络利用3×3的卷积操作生成正样本锚框以及相应的边界框回归偏移量,计算出候选框。Roi Pooling层将这些proposals从特征图中提取出相应的特征,并将这些特征送入全连接层和softmax分类网络。softmax分类网络计算后输出cls_prob概率向量,用于对每个候选框进行分类。Faster R-CNN输出带有目标检测框的图像,其中包含了检测到的目标以及其对应的边界框。

2.2 车道线检测

        为了优化特征提取网络,在原有的Faster R-CNN模型中,使用了ResNet50网络的前三个残差块进行特征提取。然而,不同层次的特征图具有不同的尺寸大小,无法直接进行融合。为了解决这个问题,引入了HyperNet网络层。

        HyperNet网络层采用不同的采样策略来处理不同层次的特征图。对于较低层次的卷积层,使用最大池化进行下采样;对于较高层次的卷积层,添加反卷积操作进行上采样。然后,对特征图进行归一化操作,将不同尺寸的特征图映射到统一尺寸。这样的网络层可以提取具有高层语义的特征,同时也能获取低层的高分辨率位置信息,从而提高小目标的检测效果。

 毕业设计:复杂背景下的车道线检测系统 深度学习 机器视觉 

        通过改变了不同层次特征图的映射方向,采用上采样的方式将全部较高层次的特征图映射到统一尺寸的低层次特征图,以避免信息丢失并提高检测准确率。为了实现端到端的训练,选择了反卷积上采样方法进行特征图映射。反卷积上采样操作是一种正向卷积操作的特殊形式,通过卷积核翻转和补零的方式扩大输入特征图的尺寸,然后将补零后的特征图作为输入进行正向卷积操作。

        通过改变特征图的映射方向,采用反卷积上采样方法来避免信息丢失,并用批量归一化操作替代局部响应归一化以获得更全面的归一化效果。这些改进措施不仅提高了模型的检测准确率,还加快了模型的收敛速度。通过这些优化,可以在目标检测任务中获得更好的性能和效率。

   毕业设计:复杂背景下的车道线检测系统 深度学习 机器视觉 

        为了解决ROIPooling映射过程中的区域不匹配问题,Mask RCNN模型引入了ROIAlign方法进行改进。ROIAlign通过舍去量化取整操作,使用双线性插值法来获取浮点数像素点上的像素值,从而避免了映射误差和均分误差的问题,提高了检测模型的准确率。

        ROIAlign的思路很简单,将图片特征聚集的过程转变为一个连续的操作,不再进行量化取整。它利用双线性插值来模拟缺失的像素值,从两个不同的方向进行线性插值,扩展了AdaptivePooling操作。与ROIPooling不同,ROIAlign不对各尺寸的子块进行最大池化操作,而是以每个子块的左上角为起点,自适应地进行扩张,得到相同尺寸大小的子块,然后对每个小块进行平均池化操作。最终得到固定大小的ROIPooling建议框特征。

三、检测的实现

3.1 数据集

        由于网络上没有现有的合适数据集,我决定进行网络爬取,收集了大量复杂背景下的道路图像,并制作了一个全新的数据集。这个数据集包含了各种真实道路场景下的图像,包括城市道路、高速公路、山区道路等。通过利用开放数据集和公共资源,我进行了数据爬取和筛选,获取了包含复杂背景下车道线的更多图像数据。这些数据包括城市交通场景、交通拥堵情况、不同天气条件下的道路图像等。在车道线检测任务中,使用图像标注工具LabelImg进行标注时,需要仔细观察图像,并准确地标记出车道线的位置、形状等信息。

 毕业设计:复杂背景下的车道线检测系统 深度学习 机器视觉 

3.2 实验环境搭建

        实验使用TensorFlow框架进行模型训练,编程环境为Python 3.8,并在GPU RTX2080TI*2的硬件平台上进行实验。通过使用TensorFlow框架和GPU硬件平台,可以充分利用硬件加速和并行计算的优势,提高训练效率并加快实验的进行。这种配置组合为实验提供了高性能和可扩展性,有助于获得更好的训练结果和模型性能。

3.3 实验及结果分析

        在改进的模型中,采用了一系列参数和技术来提高车道线检测的效果。首先,在特征提取网络中使用了三个ResNet50残差网络块,分别对应不同层次的特征图尺寸,通过融合这些特征图得到了尺寸为(150,150,1280)的融合特征图。为了进一步适应后续的前向传播过程,还在RPN网络开始处添加了一个卷积层来提取特征。

        通过RPN网络生成了每个特征点对应的9个先验框,并设定了三个初始尺寸和三种长宽比例,用于生成候选建议框。将这些候选框输入AdaptivePooling操作,固定其特征尺寸为(14,14),得到尺寸为(300,14,14,1024)的建议框特征。最后,这些建议框特征进入回归分类网络进行训练。

        在评价指标方面,本实验使用了准确率(Precision)、召回率(Recall)、F1分数和平均精度均值(mAP)来评估车道线检测的效果。准确率表示在所有识别出来的图片中,正确的正样本所占的比例,召回率表示数据集中的正样本在实验中被正确识别为正样本的比例。F1分数是准确率和召回率的综合评价指标,衡量了模型的综合性能。平均精度均值(mAP)是所有类别Precision-Recall曲线下面部分的平均值,用于衡量模型在多个类别上的检测性能。

  

相关代码示例:

import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

# 原始的训练损失值和验证损失值数据
train_losses = [0.8, 0.6, 0.4, 0.3, 0.2, 0.1]
val_losses = [1.2, 1.0, 0.8, 0.7, 0.6, 0.5]

# 定义最小二乘法的函数模型(一般选择多项式函数)
def func(x, a, b, c):
    return a * x**2 + b * x + c

# 将数据转换为numpy数组
x = np.arange(len(train_losses))
train_losses = np.array(train_losses)
val_losses = np.array(val_losses)

# 使用最小二乘法进行曲线拟合
popt_train, _ = curve_fit(func, x, train_losses)
popt_val, _ = curve_fit(func, x, val_losses)

# 平滑处理后的结果
smooth_train_losses = func(x, *popt_train)
smooth_val_losses = func(x, *popt_val)

# 绘制原始曲线和平滑曲线
plt.plot(x, train_losses, 'ro', label='Train Loss')
plt.plot(x, val_losses, 'bo', label='Validation Loss')
plt.plot(x, smooth_train_losses, 'r-', label='Smoothed Train Loss')
plt.plot(x, smooth_val_losses, 'b-', label='Smoothed Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 17
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值