L - The Euler function (欧拉筛)

 The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b) 
Input
    There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output

    Output the result of (a)+ (a+1)+....+ (b)

Sample Input

 3 100

Sample Output

3042

定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目。

核心就是当m%p==0:

f(m*p) = f(m) * p;//因为(p-1)是在f(m)中所以是乘p;

否则:

f(m*p) = f(m) * (p-1);
代码一:

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=3000001;
int phi[maxn],prime[216818];
bool a[maxn];
void isprime()
{
    int i,j,k;
    k=0;
    for(i=2;i<maxn;i++){
        if(!a[i]){
            prime[k++]=i;
            phi[i]=i-1;
        }
        for(j=0;j<k&&i*prime[j]<maxn;j++){
            a[prime[j]*i]=1;
            if(i%prime[j])
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            else{
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
        }
    }
}

代码二:
int main()
{

    int a,b,i;
    LL sum;
    isprime();
    while(~scanf("%d%d",&a,&b)){
        sum=0;
    for(i=a;i<=b;i++)
        sum+=phi[i];
    printf("%I64d\n",sum);
    }
    return 0;
}
    #include<stdio.h>  
    #define N 3000005  
    int phi[N];  
    int euler()  
    {  
        int i,j;  
        for(i=1;i<=N;i++)  
        phi[i]=i;  
        for(i=2;i<=N;i++)  
        {  
            if(phi[i]==i)  
            {  
                for(j=i;j<=N;j+=i)  
                {  
                    phi[j]=phi[j]/i*(i-1);  
                }  
            }  
        }   
    }  
    int main()  
    {  
        int a,b;  
        long long sum;  
        euler();  
        while(scanf("%d%d",&a,&b)!=EOF)  
        {  
            sum=0;  
            for(int i=a;i<=b;i++)  
            {  
                sum+=phi[i];  
            }  
            printf("%lld\n",sum);  
        }  
    }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值