深度学习学习笔记——optimizer里的computer_gradients和apply_gradients和tape的函数gradient

本文详细介绍了TensorFlow中优化器的核心函数compute_gradients和apply_gradients的功能及使用方法,并通过实例展示了如何利用tf.GradientTape进行梯度计算及参数更新。

tensorflow中的所有优化器(sgd,adam等)都有这两个函数。
一、computer_gradients

compute_gradients(
    loss,
    var_list=None,
    gate_gradients=GATE_OP,
    aggregation_method=None,
    colocate_gradients_with_ops=False,
    grad_loss=None
)

功能:计算loss中可训练的var_list中的梯度。
参数:loss,vars
返回值:返回(gradient, variable)对的列表。
二、apply_gradients

apply_gradients(
    grads_and_vars,
    global_step=None,
    name=None
)

功能:更新参数。
参数:grads_and_vars,(gradient, variable) 对的列表
返回值:.无返回值,把计算出来的梯度更新到变量上去。

三、tf.GradientTape的函数gradient

gradient(target,sources,output_gradients=None,unconnected_gradients=tf.UnconnectedGradients.NONE)
作用:根据tape上面的上下文来计算某个或者某些tensor的梯度

参数:
target: 被微分的Tensor或者Tensor列表,你可以理解为经过某个函数之后的值
sources: Tensors 或者Variables列表(当然可以只有一个值). 你可以理解为函数的某个变量
output_gradients: a list of gradients, one for each element of target. Defaults to Non

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值