DL经典文章翻译1:(AlexNet翻译)ImageNet Classification with Deep Convolutional Neural Networks

大家好,我是小P,今天给大家带来经典深度学习论文翻译的第一篇,中英对照。对“对象检测”感兴趣的小伙伴,欢迎加入对象检测群813221712讨论和交流,进群请看群公告!
说明:由于CSDN排版的原因,此处就只上传了一部分样例,完整版word文档请百度云盘下载或进群群文件下载,敬请谅解!
百度云链接:链接:https://pan.baidu.com/s/13oM8O_1VbG5Py9c-cMV2_A 密码:myqc

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca
Ilya Sutskever University of Toronto ilya@cs.utoronto.ca
GeoffreyE. Hinton University of Toronto hinton@cs.utoronto.ca
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called “dropout” that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.
本文训练了一个大规模的深度卷积神经网络来将ImageNet LSVRC-2010比赛中的包含120万幅高分辨率的图像数据集分为1000种不同类别。在测试集上,本文所得的top-1和top-5错误率分别为37.5%和17.0%,该测试结果大大优于当前的最佳水平。本文的神经网络包含6千万个参数和65万个神经元,包含了5个卷积层,其中有几层后面跟着最大池化(max-pooling)层,以及3个全连接层,最后还有一个1000路的softmax层。为了加快训练速度,本文使用了不饱和神经元以及一种高效的基于GPU的卷积运算方法。为了减少全连接层的过拟合,本文采用了最新的正则化方法“dropout”,该方法被证明非常有效。我们以该模型的变体参加了ILSVRC-2012比赛,相比第二名26.2%,我们以15.3%的top-5测试错误率获胜。


在这里插入图片描述
Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network’s inputis150,528-dimensional, and the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264– 4096–4096–1000.
图2 本文CNN的结构图示,明确地描述了两个GPU之间的职责。一个GPU运行图上方的层,另一个运行图下方的层。两个GPU只在特定的层通信。网络的输入是150,528维的,网络剩余层中的神经元数目分别是253440,186624,64896,64896,43264,4096,4096,1000


References
[1] R.M.BellandY.Koren.Lessons from the net flixprize challenge. ACM SIG KDD Explorations News letter, 9(2):75–79, 2007.
[2] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge 2010. www.imagenet.org/challenges. 2010.

致谢:https://blog.csdn.net/qianqing13579/article/details/71381016?locationNum=15&fps=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值