yolov5 模型输出的格式解析

工作需要, 又需要对yolov5 输出的模型进行转onnx 再用c++进行后续处理。
两个问题。

  1. yolov5 的模型输出的是个啥啊?
  2. 转成onnx后输出的和yolov5输出的处理是否一样呢?

关于第一个问题,yolov5 的模型输出的是个啥啊?

以前只知道抄代码就行, 也不知道里面干了啥 , 输出的后处理也都是由现成的代码来实现。 我也懒得考虑内部的原理, 反正代码正常跑。系统正常运行就可以。
但是今天不行啦, 得自己解析输出。 被逼无奈之下, 只能仔细研究下yolov5的模型和其内部的神经网络结构。关于神经网络的结构, 主要是在文件 models\yolov5s.yaml 中定义的。具体的我在下面的文件中注释写进去了。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args] 
  # 关键是这个说明, 这里得分成4个看,分别是
  # [from 数据从哪里来, number 有几个这样的层, module 层的名称, args参数] 
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   #下面这个配置的意思是,数据从-1层(上一层)来,创建3层类名叫C3的层, 参数是128
   [-1, 3, C3, [128]], 
   #下面这个配置的意思是,数据从-1层(上一层)来,创建1层类名叫Conv的层, 参数是256, 3, 2
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

这个配置文件的解析是在models\yolo.py 文件中 由 parse_model() 方法执行解析的。
下面贴一下这个函数的代码,如果没兴趣可以不看
从代码中可以看的出来,配置文件中的最后一列 arg参数, 并不是跟代码中class的参数一一对应的。
例如Conv参数在代码中需要好多个参数, 而配置文件中只配置了3个。(我非常反感这种配置来配置去,搞脑子的写法, 因为非常的不方便代码理解, 不如直接在代码中硬编码, 最好的代码是一看就懂。

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]
        
        print("模型结构" + str(m) + str(args)+"\r\n")
        
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

回归正题, 根据yolov5s.yaml配置文件来看, 模型的最后一层是Detect层
只要看懂了Detect的代码既能理解yolov5到底输出了啥。
为方便快速理解,我下面把Detect层的 class 源代码贴出来。
源代码在models\yolo.py 文件中 38 行


class Detect(nn.Module):
    # YOLOv5 Detect head for detection models
    stride = None  # strides computed during build
    dynamic = False  # force grid reconstruction
    export = False  # export mode

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid
        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                if isinstance(self, Segment):  # (boxes + masks)
                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
                else:  # Detect (boxes only)
                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
                    # xy 是中心点
                    # wh 是宽高
                    # conf 是confidence 即可信度
                    y = torch.cat((xy, wh, conf), 4)  
                z.append(y.view(bs, self.na * nx * ny, self.no))

        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
        d = self.anchors[i].device
        t = self.anchors[i].dtype
        shape = 1, self.na, ny, nx, 2  # grid shape
        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
        yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility
        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
        return grid, anchor_grid

从代码

# xy 是中心点
# wh 是宽高
# conf 是confidence 即可信度
y = torch.cat((xy, wh, conf), 4)  

中可以看的出, 这里是输出的主要数据的格式, 分别是3个参数 xy 中心点, wh 宽高,conf 可信度
经过调试发现数据的格式如下。

在这里插入图片描述
关键要看shape的最后一位,在这一步的时候,不是最终输出的格式,这里只是把它们合并起来了。后面还有个y.view进行了重新改变维度, 让这个组合的矩阵变的更加的直观, 改变维度后, 它的shape变成了
在这里插入图片描述

实际内部存储仍然是

	 [[
		[xy1,wh1,conf1,conf2,...,conf81],
		[xy2,wh2,conf1,conf2,...,conf81],
		[xy3,wh3,conf1,conf2,...,conf81],
		....
	]]

这里再补充一下,实际内部格式是

	 [[
		[x1,y1,w1,h1,conf1,conf2,...,conf81],
		[x2,y2,w2,h2,conf1,conf2,...,conf81],
		[x3,y3,w3,h3,conf1,conf2,...,conf81],
		....
	]]

这里再补充一下,并非每一行都是按照同样的算法计算最后的box, 需要乘上一个参数 anchors,
anchors参数在yolov5s.yaml中有定义, 关于什么是 anchors 这里不展开讲, (太多,我也没理解透,不敢乱讲)
我自己的大致理解是, 这3组参数,分别对应不同缩放图片的锚点参数,缩放倍数分别是 8倍,16倍,32倍。
起到可识别大物品和小物品的作用。(关于这3组框框,仅为我个人见解不一定正确。仅供参考)

anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
	 [[
		[x1,y1,w1,h1,conf1,conf2,...,conf81], #这里应该是8倍的数据
		[x2,y2,w2,h2,conf1,conf2,...,conf81], #这里应该是16倍的数据
		[x3,y3,w3,h3,conf1,conf2,...,conf81], #这里应该是32倍的数据
		
		[x4,y4,w4,h4,conf1,conf2,...,conf81], #这里应该是8倍的数据
		[x5,y5,w5,h5,conf1,conf2,...,conf81], #这里应该是16倍的数据
		[x6,y6,w6,h6,conf1,conf2,...,conf81], #这里应该是32倍的数据
		....
	]]

这里一行数据,代表一个识别的框框box,后面的conf1到81分别是这个框框在每个标签类上的可信度。

这里的xy,wh的单位,不是像素哦, 是归一化后的数值, 需要按比例转换成像素值(还需要根据锚点anchors 进行转换)。 然后画到图片上就行了
xy的坐标是框框中心点的坐标,而不是左上角的坐标哦。

知道了存储的数据格式,后续的处理,实际上就很简单了。
分别是去掉可信度比较低的框框, 叫做非极值抑制,也就是这个函数non_max_suppression(). 有的叫 nms
然后就是把可信度比较高的框框画到图片上。剩下的应该都能看的懂。

关于我是怎么知道最终数据格式并知道其每个维度的数据的意义的?
实际上我并没有查看yolov5的论文(其实是没怎么看明白!!!), 而是用了比较程序员式的方法 ----> 调试代码, 数据改成特殊数值,然后输出就知道啦。 方法分享给大家, 愿大家可以用此方法分析更多的框架。

在这里插入图片描述

  • 15
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
要使用 YOLOv5 模型进行目标检测,你需要遵循以下步骤: 1. 下载 YOLOv5 模型文件,可以从 https://github.com/ultralytics/yolov5/releases 下载。 2. 安装 PyTorch 和其他必要的库文件。 3. 加载 YOLOv5 模型,并将其设置为评估模式。 4. 对输入图像进行预处理,以适应模型的输入格式。 5. 将图像输入到模型中,获取输出结果。 6. 对输出结果进行解析,提取检测到的目标信息。 7. 可选地,对检测结果进行后处理,如 NMS(非极大值抑制)和筛选。 以下是使用 YOLOv5 进行目标检测的 Python 代码示例: ``` import torch from PIL import Image from torchvision import transforms from yolov5.yolov5 import Model # 加载 YOLOv5 模型 model = Model(weights='yolov5s.pt') # 将模型设置为评估模式 model.eval() # 对输入图像进行预处理 transform = transforms.Compose([ transforms.Resize((640, 640)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载图像 image = Image.open('test.jpg') # 对图像进行预处理 image_tensor = transform(image).unsqueeze(0) # 将图像输入到模型中,获取输出结果 with torch.no_grad(): output = model(image_tensor) # 对输出结果进行解析,提取检测到的目标信息 results = model.decode(output) # 对检测结果进行后处理,如 NMS 和筛选 results = model.postprocess(results) # 打印检测结果 print(results) ``` 注意:这只是一个简单的示例代码,具体实现可能会有所不同,需要根据具体情况进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值