一元多项式的带余除法

本文详细介绍了非零多项式的度的定义和性质,以及一元多项式带余除法的存在性和唯一性证明。度的性质表明多项式乘法和加法的度如何变化。在带余除法部分,证明了对于任何多项式f(x),都存在唯一的q(x)和r(x),使得f(x)=q(x)g(x)+r(x),其中r(x)的度小于g(x)的度或r(x)为零。
摘要由CSDN通过智能技术生成

多项式的度

定义

非零多项式 f(x)=ni=0aixi (其中首项 an0 )的度 deg(f(x))=n

性质

  1. f(x)0,g(x)0deg(f(x)g(x))=deg(f(x))+deg(g(x))
  2. f(x)0,g(x)0,f(x)+g(x)0deg(f(x)+g(x))max{ deg(f(x)),deg(g(x))}
  3. deg(f(x))=0f(x) 是非零常数。

多项式运算的性质

  1. f(x)+g(x)=g(x)+f(x)
  2. [f(x)+g(x)]+h(x)=f(x)+[g(x)+h(x)]
  3. f(x)g(x)=g(x)f(x)
  4. [f(x)g(x)]h(x)=f(x)[g(x)h(x)]
  5. f(x)[g(x)+h(x)]=f(x)g(x)+f(x)h(x)
  6. f(x)0,f(x)g(x)=f(x)h(x)g(x)=h(x)
    证明:
    f(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值