多项式的度
定义
非零多项式 f(x)=∑ni=0aixi (其中首项 an≠0 )的度 deg(f(x))=n
性质
- f(x)≠0,g(x)≠0⇒deg(f(x)g(x))=deg(f(x))+deg(g(x))
- f(x)≠0,g(x)≠0,f(x)+g(x)≠0⇒deg(f(x)+g(x))≤max{ deg(f(x)),deg(g(x))}
- deg(f(x))=0⇔f(x) 是非零常数。
多项式运算的性质
- f(x)+g(x)=g(x)+f(x)
- [f(x)+g(x)]+h(x)=f(x)+[g(x)+h(x)]
- f(x)g(x)=g(x)f(x)
- [f(x)g(x)]h(x)=f(x)[g(x)h(x)]
- f(x)[g(x)+h(x)]=f(x)g(x)+f(x)h(x)
- f(x)≠0,f(x)g(x)=f(x)h(x)⇒g(x)=h(x)
证明:
f(x)