点云配准
文章平均质量分 90
phy12321
2019年入学研究生在读
展开
-
【论文笔记】实时、SOTA的激光里程计 Efficient LiDAR Odometry for Autonomous Driving 2021
Efficient LiDAR Odometry for Autonomous Driving 2021浙江大学地面点在BEV中处理,非地面点在range-image中处理,解决了range-image中的相邻的地面像素点在实际中相距缺非常远从而增大了匹配误差的问题。采用scan2model的方式提升匹配精度并达到了SOTA,但是局部model使用三张二维image来存储,因此内存消耗很小且有界。最终在嵌入式设备上的速度达到了37fps, 可以说是精度、速度、内存消耗的集大成者。概述:现有激光里原创 2021-04-24 22:14:06 · 927 阅读 · 0 评论 -
【论文笔记】基于点云柱面投影图的平面特征提取SLAM: Fast planar surface 3D SLAM using LIDAR 2017
本文提出了可以在大场景下实时运行的SLAM系统,其使用平面表面段(planar surface segments)来表示环境,因为它们在室内和室外城市空间中都很普遍。本文的三个创新点:使用了现有的方法(原本是设计用于RGBD数据),在全景视图上对点云进行分割:将点云划分为三个双通道的全景图上,基于Delaunay三角剖分以及区域合并,实现点云的2.5D快速分割。《Fast pose tracking based on ranked 3D planar patch correspondences》原创 2021-02-14 22:15:20 · 1167 阅读 · 0 评论 -
【论文笔记】点云关键点检测和特征提取 USIP: Unsupervised Stable Interest Point Detection from 3D Point Clouds 2019 论文笔记
新加坡国立大学代码链接:https://github.com/lijx10/USIP这是一篇通过无监督学习来进行点云关键点检测的文章.整体的网络结构:首先将输入的点云进行随机旋转平移变换,网络分别对两个点云进行关键点提取得到关键点QQQ,并对每个关键点的不确定度进行预测得到∑\sum∑。损失函数Probabilistic Chamfer Loss作者希望网络能够学习点云中的稳定的关键点(repeatability),也就是说两个场景信息大部分重合的点云,即网络的两个输入,应该能够.原创 2020-09-21 23:08:53 · 3928 阅读 · 0 评论 -
【论文笔记】点云配准网络 3DRegNet: A Deep Neural Network for 3D Point Registration 2020
Instituto Superior T ́ecnico, Lisboa; Google;印度科学研究所,班加罗尔;马里兰大学帕克分校代码链接:https://github.com/3DVisionISR/3DRegNet本文提出了一种基于深度学习的点云配准方法3DRegNet,超越了现有RANSAC和ICP的精度,同时在CPU上也达到了25倍RANSAC的速度。注意3DRegNet假设两个点云之间的对应关系是给定的,3DRegNet只负责剔除噪声点,生成位姿变换矩阵这两个任务。实验部分对现有的.原创 2020-09-08 22:54:07 · 2583 阅读 · 3 评论