Patch Normalization Regularization

贡献:

提出了一种新的正则化方法,减少过拟合的发生,同时让神经网络具有更好的鲁棒性。

这种方法在图像和feature map 内部进行局部的permutation (置换),没改变整体的特征信息,又添加了新的变化(variance),用于训练中,提高了模型的鲁棒性,防止过拟合的发生

过拟合

过拟合的定义:训练的模型适应了噪声信息,而不是去捕捉数据中隐藏的变量信息。

过拟合出现原因:

1.参数过少,不足以包含足够的信息,导致会被无关的局部信息误导。

2.数据过少,训练的模型鲁棒性太差。

即使输入的图片的局部有一些变化,但是并没有破坏图片的整体性情况下,模型应该还可以正常工作。比如图片的马赛克,虽然打码,但是人们依然可以透过模糊,猜出图片正确分类。

Patch Shuffle 的优点:

  1. 仅消耗极少的内存和时间。不改变学习策略的情况下, 可以应用于各种神经网络当中。
  2. 现有正则化方法的一个补充。在四种代表性的分类数据中,与其他正则化方法结合使用,PatchShuffle进一步提升了分类的精度。
  3. 提升了CNNs对噪声的鲁棒性。

注意:椒盐噪声是指两种噪声,一种是盐噪声(salt noise)盐 = 白色(255),另一种是胡椒噪声(pepper noise)椒 = 黑色(0)。前者是高灰度噪声,后者属于低灰度噪声。一般两种噪声同时出现,呈现在图像上就是黑白杂点。

PatchShuffle Refularization

X表示原图像,T()()表示PatchShuffle Transformation操作

r表示伯努利分布(Bernoulli),即概率p,r=1;概率(1-p),r=0;

将图像分割成没有重叠的数据块,大小n\times n

公式三,表示具体的permutation操作,p_{ij}改变x_{ij}的行,同理,最后边的p_{ij}^{'}改变列。

注意:每一个patch将会被置换n^{2}次。想象成n^{2}个空格插入n^{2}个苹果,你就明白了~

除了将ParchShuffle应用于图像,我们还可以将其应用于feature map。

在整个feature map随机抽选一个feature map PS(patch shuffle)处理。对于中低层的特征,其空间结构大部分保留,PS用在这些层上来正则化training。而对于高层卷积层,PS可以让临近的像素(pixel)共享权重(weight sharing)。

训练和推理

\gamma的数值大小控制着Patch Shuffle所占的比重大小

损失函数的期望:

在feature map 无论怎么变,最后都是要再一次回到原来的feature map,这种consistency一直存在。

一个具体的例子

 

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值