汽车电子功能安全标准ISO26262解析(十二)——HARA分析

ISO 26262-3: Clause 7 (HARA) Hazard analysis and risk assessment 危害分析和风险评估

1. Objectives 目的

The objective of the hazard analysis and risk assessment is to identify and categorise the hazards of the item and formulate the safety goals related to the prevention or mitigation of these hazards, in order to avoid unreasonable risk.

危害分析和风险评估的目的是鉴别和分类项目的危害,形成为了防止或降低这些危害而必须满足的安全目标,以避免不合理的风险。

2. Hazards shall be defined in terms of the conditions or events that can be observed at the vehicle level.

危害的定义要基于在整车级别可以观测到的条件或事件。

The consequences of hazardous events shall be identified for relevant operational situations and operating modes.

危害事件的结果应根据不同的工作条件和工作模式在确定。

NOTE If a fault induces the loss of several functions of the item then the situation analysis and hazard identification considers the resulting hazards from the multifunctional degradation of the item or vehicle. For instance, a fault in the vehicle power supply may cause the simultaneous loss of the functions "engine torque","electrical power steering" and the "front lights".

如果一个错误使得相关项的几个功能缺失,那么条件分析和危害定义时需要考虑相关项的多个功能降低导致的危害。例如,车辆电源的错误可能导致如下几个功能同时丢失:引擎扭矩,电控,前灯等。

3. All hazards identified during the previous stage shall be classified. 对所有的危害进行分级

4. hazard分析方法及步骤

(1) item definition: 相关项定义

---说明系统的功能,可以附加简明扼要的解释

---说明系统的边界

---说明哪些功能不包含在系统内

以上说明可以是文字的格式,也可以是框图的格式。

(2) 驾驶场景定义:

驾驶场景包括:

---路面及位置类型:高速路/城市路、越野路、停车场、维修站/车库

---路面条件:表面摩擦、坡路、路宽

---其他路面特性:侧风、迎面而来的车辆、交通拥堵、建筑物区域、交通事故场景

---驾驶策略: 启动、转向、直行、泊车、熄火

---驾驶模式:滑行、停止、加速、刹车、泊车、碰撞

---其他整车特性:其他系统的状态、钥匙门启动/关断、重载、维修、驱动能力

(3) 定义危险:在考虑驾驶场景的前提下,定义整车级别及系统级别的危险。

(4) 定义危险的严重度等级,暴露度等级和可控度等级:

根据严重度、暴露度、可控度等级定义标准,定义每个危险的严重度等级、暴露度等级和可控度等级。

(5) 定义安全目标:

为每一条危险定义安全目标。例如危险为安全气囊误点火,那么安全目标就是防止安全气囊误点火。

(6) 定义安全目标的等级:

根据安全目标等级定义标准,及每一条危险的S\E\C值,定义安全目标等级。

 

如有兴趣,可扫下方二维码关注功能安全公纵号,也可直接入群,参与交流与讨论,管理员会定期更新功能安全相关经验、对标准的理解,等等。

 

 

 

 

 

 

 

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值