auto-sklearn的简单分类预测和回归预测的例子

import autosklearn.classification
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics

if __name__ == "__main__":
    print('loading data...')
    X, y = sklearn.datasets.load_digits(return_X_y=True)
    print('finish loading.')

    X_train, X_test, y_train, y_test = \
        sklearn.model_selection.train_test_split(X, y, random_state=1)
    automl = autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task=60,per_run_time_limit=10,n_jobs=2)

    print('training ...')
    automl.fit(X_train, y_train)
    y_hat = automl.predict(X_test)
    print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))
import autosklearn.regression
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics

# 加载一个回归数据集,例如波士顿房价数据集
X, y = sklearn.datasets.load_boston(return_X_y=True)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, random_state=1)

# 初始化AutoSklearnRegressor
automl = autosklearn.regression.AutoSklearnRegressor(
    time_left_for_this_task=120,  # 设置模型训练时间(秒)
    per_run_time_limit=30         # 设置每个模型训练时间的限制(秒)
)

# 训练模型
automl.fit(X_train, y_train)

# 预测测试集
y_pred = automl.predict(X_test)

# 评估模型
print("R2 score:", sklearn.metrics.r2_score(y_test, y_pred))
print("Mean squared error:", sklearn.metrics.mean_squared_error(y_test, y_pred))

# 查看找到的最佳模型
print(automl.show_models())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

piaopiaolanghua

感谢鼓励,再接再厉!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值