MAE 与 RMSE 误差对比

  • MAE(平均绝对误差)与RMSE(均方根误差)的主要区别在于它们对误差的处理方式和敏感性不同。‌ MAE对所有误差一视同仁,无论误差大小都给予相同的权重,因此对异常值不敏感;而RMSE则对较大的误差更为敏感,因为误差被平方后,大误差的影响会被显著放大‌。
  • 具体来说,MAE的计算公式是预测值与实际值差值的绝对值的平均数,而RMSE则是先计算预测值与实际值差值的平方的平均数,然后再开方。这种差异导致RMSE对大误差的惩罚比MAE更严重。例如,如果一个预测模型的误差中有几个极端值,RMSE会因为这些极端值而被显著影响,而MAE则相对稳定‌。
  • 应用场景方面,MAE适用于需要平均考虑所有误差的情况,如商品销量预测等,因为它对异常值不敏感;而RMSE则适用于需要严格控制大误差的应用场景,如金融预测等高风险领域,因为它能放大大误差的影响‌。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

piaopiaolanghua

感谢老板鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值