RMSE(Root Mean Square Error,均方根误差)和 MAE(Mean Absolute Error,平均绝对误差)都是常用的回归模型评估指标,用于衡量预测值与真实值之间的误差大小。它们在评估和比较不同模型的预测能力时非常有用。
RMSE(均方根误差)
RMSE 是预测值与真实值之间误差的平方和的平均值的平方根。它的计算公式如下:
其中,n是样本数量,是真实值,
是预测值。
- 作用:
- RMSE 衡量了预测值与真实值之间的平均误差大小。
- 在回归模型中,RMSE 越小表示模型的预测能力越好,即模型的预测值与真实值之间的差异越小。
MAE(平均绝对误差)
MAE 是预测值与真实值之间误差的绝对值的平均值。它的计算公式如下:
- 作用:
- MAE 衡量了预测值与真实值之间的平均绝对误差大小。
- 与 RMSE 不同,MAE 可以避免平方的影响,直接反映出预测值偏离真实值的平均程度。
比较与选择
- RMSE vs. MAE:
- RMSE 对异常值更为敏感,因为它对误差的平方求和放大了较大误差的影响,适合用于对误差更加敏感的情况。
- MAE 对异常值的影响较小,因为它使用的是误差的绝对值,适合用于对异常值不那么敏感的情况。
- 在实际应用中,选择使用 RMSE 还是 MAE 可根据具体问题的需求和误差分布情况来决定。通常来说,如果问题中的异常值对模型性能影响较大,倾向于使用 RMSE;如果异常值对模型影响较小,可以考虑使用 MAE。
示例
假设有以下预测结果和真实值:
- 真实值 y=[3,7,5,8,2]
- 预测值
= [2, 6, 4, 9, 3]
计算 RMSE 和 MAE:
在这个例子中,RMSE 和 MAE 都是 1,表示预测值与真实值的平均误差均为 1。