RMSE(Root Mean Square Error,均方根误差)和 MAE(Mean Absolute Error,平均绝对误差)

RMSE(Root Mean Square Error,均方根误差)和 MAE(Mean Absolute Error,平均绝对误差)都是常用的回归模型评估指标,用于衡量预测值与真实值之间的误差大小。它们在评估和比较不同模型的预测能力时非常有用。

RMSE(均方根误差)

RMSE 是预测值与真实值之间误差的平方和的平均值的平方根。它的计算公式如下:

\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}

其中,n是样本数量,y_i是真实值,\hat{y}_i是预测值。

  • 作用
    • RMSE 衡量了预测值与真实值之间的平均误差大小。
    • 在回归模型中,RMSE 越小表示模型的预测能力越好,即模型的预测值与真实值之间的差异越小。

MAE(平均绝对误差)

MAE 是预测值与真实值之间误差的绝对值的平均值。它的计算公式如下:

\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|

  • 作用
    • MAE 衡量了预测值与真实值之间的平均绝对误差大小。
    • 与 RMSE 不同,MAE 可以避免平方的影响,直接反映出预测值偏离真实值的平均程度。

比较与选择

  • RMSE vs. MAE: 
    • RMSE 对异常值更为敏感,因为它对误差的平方求和放大了较大误差的影响,适合用于对误差更加敏感的情况。
    • MAE 对异常值的影响较小,因为它使用的是误差的绝对值,适合用于对异常值不那么敏感的情况。
    • 在实际应用中,选择使用 RMSE 还是 MAE 可根据具体问题的需求和误差分布情况来决定。通常来说,如果问题中的异常值对模型性能影响较大,倾向于使用 RMSE;如果异常值对模型影响较小,可以考虑使用 MAE。

示例

假设有以下预测结果和真实值:

  • 真实值 y=[3,7,5,8,2]
  • 预测值 \hat{y} = [2, 6, 4, 9, 3]

计算 RMSE 和 MAE:

\text{RMSE} = \sqrt{\frac{(3-2)^2 + (7-6)^2 + (5-4)^2 + (8-9)^2 + (2-3)^2}{5}} = \sqrt{\frac{1 + 1 + 1 + 1 + 1}{5}} = \sqrt{1} = 1

\text{MAE} = \frac{|3-2| + |7-6| + |5-4| + |8-9| + |2-3|}{5} = \frac{1 + 1 + 1 + 1 + 1}{5} = 1

在这个例子中,RMSE 和 MAE 都是 1,表示预测值与真实值的平均误差均为 1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值