大模型是否可以替代规则引擎?
引言
在大模型开始流行之前,业务系统在进行费率计算时,一般采用drools等规则引擎,根据业务人员设定的规则来进行规则运算,并得到最终费率。那么,大模型是否可以替代规则引擎的工作呢?
大模型(如 GPT、BERT 等)在规则引擎场景中的应用是一个有趣且复杂的问题。虽然大模型在某些方面表现出色,但在替代 Drools 等规则引擎时,仍然存在一些风险和挑战。
1、技术产品的选择
1.1 对比分析
实际上,在规则逻辑控制这条路上,大模型只是一个新物种而已。在此之前,我们已经采用程序代码的if-else判断语句、规则引擎产品来实现规则控制。而规则引擎并未完全替代程序代码if-else逻辑判断,只因二者适用场景不同而已。而大模型与规则引擎也有各自不同特点。
规则引擎(以Drools为例)的特点:
- 确定性:Drools 基于明确的规则和逻辑,输出结果是确定且可预测的。
- 可解释性:规则引擎的决策过程透明,便于业务人员理解和调整。
- 高效性:对于复杂的规则计算,Drools 能够快速执行。
- 稳定性:规则引擎在长期运行中表现稳定,适合高可靠性的业务场景。
大模型的特点:
- 灵活性:大模型能够处理复杂的非线性关系,适合处理模糊或不确定的场景。
- 学习能力:大模型可以从历史数据中学习规律,自动生成规则或决策。
- 适应性:大模型能够适应动态变化的业务环境,无需频繁调整规则。
- 不确定性:大模型的输出可能存在随机性,且难以完全解释其决策过程。
由上可见,二者是不同的产品,具有不同的技术特点,它们适应的细分场景也当然不同。就像规则引擎并不能替代程序代码的判断逻辑一样,大模型AI也不能完全替代规则引擎。在某些场景下,大模型比规则引擎更适合,仅此而已。
1.2 如何选择
行业内目前有一个明确的选择准则:确定性匹配时使用规则,灵活性匹配时使用AI。
- AI智能的灵活性,最终会带来更宽的业务适配,也就不需要基于产品UI或规则的归类,而且判断分支情况太多,也没办法进行逐一归类。也就是说,AI智能应用必然要解决复杂场景,解决规则所不能到达地方的问题。
- AI智能应用的这种适配(通过自然语言宽泛的适配)的特征也决定了这种应用类型所匹配的领域。如果是只是简单的规则就能搞定,并且产生利润,其实并不是智能原生应用的最佳落点。
- 在规则确定、功能确定的场景下(也是目前大多数业务的场景),基于AI的智能型产品反而带来更多的不确定性和不可控性。此时,还是需要传统的规则逻辑和规则引擎等方式进行实现。1
简单来说,针对确定性的规则,也就是目前绝大多数业务场景来说,使用传统的规则引擎仍然是最佳实践方案。而对于基于概念理解和自行判断的能力场景下,才应考虑使用大模型AI。
2、大模型在费率计算场景中的应用
在费率计算场景中,大模型可以通过以下方式发挥作用:
- 从历史数据中学习费率规则:
- 大模型可以分析历史业务数据,自动学习费率计算公式和条件判断逻辑。
- 例如,通过输入商品属性、客户信息、市场环境等数据,大模型可以预测费率。
- 动态调整费率:
- 大模型可以根据实时数据(如市场变化、客户行为)动态调整费率,而无需手动修改规则。
- 处理复杂规则:
- 对于复杂的费率规则(如多条件嵌套、非线性关系),大模型可能比规则引擎更具优势。
3、潜在风险和困难
3.1 数据依赖性问题
高质量数据需求:
大模型需要大量高质量的历史数据来训练,如果数据不足或存在偏差,可能导致模型输出不准确。
数据隐私保护:
费率计算可能涉及敏感数据,如何确保数据安全和隐私是一个重要问题。
3.2 模型的可解释性问题
黑箱问题:
大模型的决策过程难以解释,业务人员可能无法理解费率计算的依据。
合规性问题
在某些行业(如金融、保险),费率计算需要符合监管要求,黑箱模型可能无法满足合规性。
3.3 模型的稳定性问题
输出的不确定性:
大模型的输出可能存在随机性,导致费率计算结果不一致。
模型漂移问题:
随着时间的推移,模型可能因数据分布变化而失效,需要定期更新和重新训练。
3.4 性能问题
计算成本高:
大模型的推理成本较高,可能无法满足实时性要求。
资源消耗大:
大模型需要大量的计算资源,可能增加系统部署和运维的复杂度。
3.5 规则的可控性问题
规则调整困难:
大模型生成的规则难以手动调整,业务人员可能无法快速响应业务变化。
规则冲突问题:
大模型可能生成与现有规则冲突的决策,导致业务逻辑混乱。
4、可能的解决方案
为了降低风险和困难,可以考虑以下解决方案:
4.1 采用混合模式
将大模型与规则引擎结合使用。例如,使用大模型生成初步费率,再通过规则引擎进行校验和调整。
这种方式既能发挥大模型的灵活性,又能保留规则引擎的可控性和可解释性。
4.2 引入模型解释工具
使用模型解释工具(如 LIME、SHAP)提高大模型的可解释性,帮助业务人员理解费率计算的依据。
4.3 数据增强与清洗
通过数据增强和清洗技术,提高训练数据的质量和多样性,减少模型偏差。
4.4 模型监控与更新
建立模型监控机制,定期评估模型性能,及时更新模型以应对数据分布变化。
4.5 合规性设计
在设计大模型时,考虑行业监管要求,确保费率计算符合合规性。
总结
大模型在费率计算场景中具有一定的潜力,可以替代部分规则引擎的功能,但在实际应用中需要解决数据依赖性、可解释性、稳定性和可控性等问题。建议采用混合模式,结合大模型和规则引擎的优势,逐步探索和优化。同时,需要建立完善的模型监控和更新机制,确保系统的稳定性和合规性。