Opencv的deep/ddepth问题

本文深入探讨了图像深度的概念,包括每个像素的位数如何决定颜色或灰度级数,以及如何计算图像数据量。还介绍了OpenCV中不同数据类型如CV_8U、CV_32F等,它们与图像通道数的关系,以及如何用这些类型表示不同类型的图像,如灰度图和RGB彩色图像。
摘要由CSDN通过智能技术生成

图像深度(deep/ddepth)是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级.比如一幅单色图像,若每个像素有8位,则最大灰度数目为2的8次方,即256.一幅6060的彩色图像RGB3个分量的像素位数分别为8,8,8位,就是说像素的总深度为24位,这张图像的数据量就为:
60
60*24bit=10800字节=10.546875Kb=0.01029968Mb
CV_<bit_depth>(S|U|F)C<number_of_channels>
bit_depth—比特数—代表8bite,16bites,32bites,64bites—举个例子吧–比如说,如如果你现在创建了一个存储–灰度图片的Mat对象,这个图像的大小为宽100,高100,那么,现在这张灰度图片中有10000个像素点,它每一个像素点在内存空间所占的空间大小是8bite,8位–所以它对应的就是CV_8
(S|U|F)–S–代表—signed int—有符号整形
U–代表–unsigned int–无符号整形
F–代表–float---------单精度浮点型
CV_8U - 8位无符号整数(0…255)
CV_8S - 8位有符号整数(-128…127)
CV_16U - 16位无符号整数(0…65535)
CV_16S - 16位有符号整数(-32768…32767)
CV_32S - 32位有符号整数(-2147483648…2147483647)
CV_32F - 32位浮点数(-FLT_MAX…FLT_MAX,INF,NAN)
CV_64F - 64位浮点数(-DBL_MAX…DBL_MAX,INF,NAN)
C<number_of_channels>----代表—一张图片的通道数,比如:
-1–代表与源图像的通道数一致
1–灰度图片–是单通道图像
2–RGB彩色图像–是3通道图像
3–带Alph通道的RGB图像–是4通道图像
这里的1、2、3代表的是通道数,比如RGB就是3通道,颜色表示最大为255,所以可以用CV_8UC3这个数据类型来表示;灰度图就是C1,只有一个通道;而带alph通道的PNG图像就是C4,是4通道图片。
例子:
CV_64FC3代表一张图像上的每个像素点是由64位浮点数且通道数为3的RGB彩色图像。
CV_8UC3代表一张图像上的每个像素点是由8位无符号整数且通道数为3的RGB彩色图像。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值