三角函数
三角函数在各象限的正负
特殊角的三角函数值
三角函数的定义
三角函数关系
①倒数关系,图中在一条对角线上的函数互为倒数,如sin=1/csc
②乘积关系,图中两边乘积等中间,如sin x sec = tan
③平方关系,图中阴影部分的三个三角形中,顶角的平方和等于底角的平方,如 tan2 + 12 = sec2
三角函数公式
诱导公式
奇变偶不变,符号看象限。
是不是很耳熟?还记得是啥吗?
- 角α为锐角,计算α+nπ/2的值
- 奇偶是π/2的系数,如π/2、3π/2、5π/2则将sin变为cos,π、2π、3π则不变函数
- 符号为函数在各象限内的符号
例题 sin570°
sin(540°+30°)=-sin30°=-1/2
两角和差公式
和差化积公式
积化和差公式
二倍角公式
半角公式
通用公式
函数图像
y = sin x
定义域 x∈R
值域 [-1,1]
特殊点 x=kπ时y=0;x=π/2+2kπ时y=1;x=-(π/2)+2kπ时y=-1;
单调区间 增区间[-(π/2)+2kπ,π/2+2kπ];减区间[π/2+2kπ,(3π/2)+2kπ]
奇偶性奇函数
周期性 T=2π,t=π
对称轴 x=π/2+kπ
对称点(kπ,0)
y = cos x
定义域 x∈R
值域 [-1,1]
特殊点 x=π/2+kπ时y=0;x=2kπ时y=1;x=(2k-1)π时y=-1;
单调区间 增区间[-π+2kπ,0+2kπ];减区间[0+2kπ,π+2kπ]
奇偶性偶函数
周期性 T=2π,t=π
对称轴 x=kπ
对称点(π/2+kπ,0)
y = tan x
定义域 x≠π/2+kπ
值域 (-∞,+∞)
特殊点 x=kπ时y=0;
单调区间 增区间(-(π/2)+kπ,π/2+kπ);
奇偶性奇函数
周期性 T=π
对称轴 不存在
对称点(kπ/2,0)
y = cot x
定义域 x≠kπ
值域 (-∞,+∞)
特殊点 x=π/2+kπ时y=0;
单调区间 减区间(0+kπ,π+kπ);
奇偶性奇函数
周期性 T=π
对称轴 不存在
对称点(π/2+kπ/2,0)
y = sec x
定义域 x≠π/2+kπ
值域 (-∞,-1)∪(1,+∞)
特殊点 x=2kπ时y=1;x=(2k+1)π时y=-1;
单调区间 增区间[0+2kπ,π/2+2kπ)∪(π/2+2kπ,π+2kπ];减区间[-π+2kπ,-(π/2)+2kπ)∪(-(π/2)+2kπ,0+2kπ]
奇偶性偶函数
周期性 T=2π
对称轴 x=kπ
对称点(kπ,0)
y=csc x
定义域 x≠kπ
值域 (-∞,-1)∪(1,+∞)
特殊点 x=π/2+2kπ时y=1;x=3π/2+2kπ时y=-1;
单调区间 增区间(-π+2kπ,-(π/2)+2kπ]∪[π/2+2kπ,π+2kπ);减区间[-(π/2)+2kπ,0+2kπ)∪(0+2kπ,π/2+2kπ]
奇偶性奇函数
周期性 T=2π
对称轴 x=π/2+kπ
对称点(π/2+kπ,0)
总结
本篇为三角函数的相关内容,包括三角函数的定义,三角函数之间的关系,三角函数的常用公式以及三角函数的图像和性质