三角函数,正弦,余弦,正切讲解

文章详细介绍了三角函数中的正弦、余弦和正切的基本性质,包括定义域、值域、周期性、最值、对称性、奇偶性、单调性以及它们的图像在各个象限的正负情况。此外,还探讨了正弦型函数的一般形式及其参数含义,并提供了三角函数的重要公式,如诱导公式、和差公式和倍角公式等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、正弦函数

在这里插入图片描述

1 图形性质

定义域 x为任一实数(实数集合)
值域 y = [-1,1] —正弦函数有界性

2 周期性

2π 为一个周期

3 最值及零点

1 最大值:当 x = π/2 +2kπ 时, k∈Z,y为最大,即 y =1
2 最小值:当 x = 3π/2 +2kπ 时, k∈Z,y为最小,即 y = -1
3 零点:当x =kπ 时 k∈Z ,为零值,即 y =0

4 对称性

既是轴对称图形,又是中心对称图形
1 轴对称:关于直线 x = π/2 +kπ, k∈Z 对称
2 中心对称 :关于点(kπ,0),k∈Z 对称

5 奇偶性

奇函数(图像关于原点对称)

6 单调性

在区间 [ -π/2+ 2kπ,π/2+ 2kπ] ,k∈Z 上单调递增
在区间 [ π/2+ 2kπ,3π/2+ 2kπ] ,k∈Z 上单调递减

7 函数及性质

正弦型函数解析式:y=Asin(ωx+φ)+h
φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)
ω:决定周期(最小正周期T=2π/|ω|)
A:决定峰值(即纵向拉伸压缩的倍数,正扩负缩)
h:表示波形在Y轴的位置关系或纵向移动距离(上加下减)

二 余弦函数

在这里插入图片描述

1 图形性质

定义域 x为任一实数(实数集合)
值域 y = [-1,1] —正弦函数有界性

2 周期性

2π 为一个周期

3 最值及零点

1 最大值:当 x = 2kπ 时, k∈Z,y为最大,即 y =1
2 最小值:当 x = π +2kπ 时, k∈Z,y为最小,即 y = -1
3 零点:当x =π/2+kπ 时 k∈Z ,为零值,即 y =0

4 对称性

既是轴对称图形,又是中心对称图形
1 轴对称:关于直线 x = kπ, k∈Z 对称
2 中心对称 :关于点(π/2+kπ,0),k∈Z 对称

5 奇偶性

偶函数(图像关于y轴对称)

6 单调性

在区间 [ -π+ 2kπ,2kπ] ,k∈Z 上单调递增
在区间 [ 2kπ,π+ 2kπ] ,k∈Z 上单调递减

7 函数及性质

正弦型函数解析式:y=Acos(ωx+φ)+h
φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)
ω:决定周期(最小正周期T=2π/|ω|)
A:决定峰值(即纵向拉伸压缩的倍数,正扩负缩)
h:表示波形在Y轴的位置关系或纵向移动距离(上加下减)

三 正切函数

在这里插入图片描述

1 图形性质

定义域: {x|x≠(π/2)+kπ,k∈Z}。即x 不能等于 π/2 +kπ,k∈Z
值域 y = 实数集R ,无界性

2 周期性

π 为一个周期

3 最值及零点

1 最大值:无最大值
2 最小值:无最小值
3 零点:当x = kπ 时 k∈Z ,为零值,即 y =0

4 对称性

无轴对称,只有中心对称
1 轴对称:无轴对称
2 中心对称 :关于点(kπ,0),k∈Z 对称

5 奇偶性

奇函数(图像关于原点对称)

6 单调性

在区间 [ -π/2+ kπ,π/2+kπ] ,k∈Z 上单调递增
无单调递减区间

四 象限正负

在这里插入图片描述
1 正弦函数从第一象限到第四象限正负情况为 :正正负负
2 余弦函数从第一象限到第四象限正负情况为 :正负负正
3 正切函数从第一象限到第四象限正负情况为 :正负正负

象限正负可以通过单位圆来更好的理解,如下图所示
在这里插入图片描述

以原点(0,0)为圆心,半径 r 为1 画圆就是单位圆,这样圆内就有四个象限
第一象限 α∈[0,π/2] ,在 x正轴上 α =0
第二象限 α∈[π/2,π] ,在 y正轴上 α =π/2
第三象限 α∈[π,3π/2] ,在 x负轴上 α =π
第四象限 α∈[3π/2,2π] 在 y负轴上 α =3π/2

以半径 r 和 x轴的夹角为 α ,则有:
sinα = y / r
cosα = x / r
tanα = y / x
因为 r 等于1 且为正 所以有
在坐标轴中,对于正弦则有:

当 y>0时 ,即α∈[0,π] ,正弦为正,当 y<0时,即α∈[π,2π],正弦为负,y =0时 ,在x轴上时,即α=0或 α=π,正弦为0

在坐标轴中,对于余弦则有:

当 x>0时 ,即α∈[0,π/2] 或α∈[3π/2,2π] 余弦为正,当 x<0时,即α∈[π/2,π] 或α∈[π,3π/2] ,余弦为负,x =0时 ,即在y轴上时,即α=π/2或 α=3π/2,余弦为0

在坐标轴中,对于正切则有:

当 x和 y同号时,即x >0,y >0或x < 0,y <0,α∈[0,π/2] 或α∈[π,3π/2],正切为正,当 x和 y异号时,即x >0,y <0或x < 0,y >0,α∈[π/2,π] 或α∈[3π/2,2π],正切为负,当 y=0时,在x轴上时,即α=0或 α=π,正切为0。x为除数,等于0时无意义,但是正切函数是过原点,所以在无限周期内,有且只有一个点是x=0的,即过原点时,此时正切也为0。

五 三角函数公式

注:里面加了正割(sec),余割(csc),余切(cot或ctg),基本用不到,常见的就是讲的三种。后三种只是前三种两条边交换了一下位置而已。

1 倒数关系

sinα cscα =1
cosα
secα =1
tanα*cotα =1

2 商数关系

tanα = sinα / cosα
cotα = cosα / sinα

3 平方关系

sin²α + cos²α = 1
1 + cot²α = csc²α
1 + tan²α = sec²α

4 诱导公式

1 α为锐角
sin(2kπ + α) = sinα (k∈Z)
cos(2kπ + α) = cosα (k∈Z)
tan(kπ + α) = tanα (k∈Z)

2 α为锐角
sin(π + α) = -sin(α)
cos(π + α) = -cos(α)
tan(π + α) = tan(α)
sin(π - α) = sin(α)
cos(π - α) = -cos(α)
tan(π - α) = -tan(α)
sin(- α) = -sin(α)
cos(- α) = cos(α)
tan(- α) = -tan(α)
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα

3 两角和与差的三角函数公式万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)= (tanα+tanβ)/ (1-tanα *tanβ)
tan(α-β)=(tanα-tanβ)/( 1+tanα *tanβ)

sinα=2*tan(α/2) / ( 1+tan2(α/2))
cosα=(1-tan2(α/2))/ (1+tan2(α/2))
tanα=(2tan(α/2))/ (1-tan2(α/2) )

4 三角函数的降幂公式
sin²α = (1 - cos2α)/2
cos²α =(1 + cos2α)/2

5 二倍角公式
sin2α=2sinα*cosα
cos2α=cos²α-sin²α=2cos²α-1=1-sin²α
tan2α=(2tanα)/ ( 1-tan²α )

6 三角形公式
S = sqrt( P(P-a)(P-b)(P-c) ) //三角形面积公式
其中P = (a+b+c) / 2

cosα = (b² + c² - a²) / 2bc //同理可推出其他两个角的余弦值。
a / sinα = b / sinβ = c / sinγ = 2R = D
其中 α,β,γ为三角形三条边 a,b,c的对角,R和D为三角形外接圆的半径和直径

### 余弦距离的概念 余弦距离是一种衡量两个向量之间角度差异的方法。它基于向量之间的夹角,而不是它们的实际长度。具体来说,余弦距离定义为 \(1 - \cos(\theta)\),其中 \(\cos(\theta)\) 是两个向量间的夹角余弦值[^4]。 在机器学习领域,余弦距离常用于比较文档、图像或其他多维特征表示的相似性。当两个向量的方向越接近时,其夹角越小,则余弦值越大,表明两者更相似;反之亦然。 --- ### 编程中的实现方法 以下是 Python 中计算余弦距离的一个典型实现: #### 使用 NumPy 实现 ```python import numpy as np def cosine_distance(vector1, vector2): dot_product = np.dot(vector1, vector2) # 向量点积 norm_vector1 = np.linalg.norm(vector1) # 向量1的L2范数 norm_vector2 = np.linalg.norm(vector2) # 向量2的L2范数 if norm_vector1 == 0 or norm_vector2 == 0: raise ValueError("Zero magnitude vectors are not allowed.") cos_similarity = dot_product / (norm_vector1 * norm_vector2) # 夹角余弦值 return 1 - cos_similarity # 返回余弦距离 # 示例数据 vector1 = np.array([30, 60000, 2014]) vector2 = np.array([25, 58000, 2010]) distance = cosine_distance(vector1, vector2) print(f"余弦距离: {distance}") ``` 上述代码中,`np.dot()` 函数用来计算两向量的点积,而 `np.linalg.norm()` 则分别求取各向量的 L2 范数值。最终通过公式 \(1 - \frac{\text{dot\_product}}{\|v_1\|\cdot \|v_2\|}\) 得到余弦距离。 --- ### 高维度场景下的应用 尽管示例使用的是三维向量,但在实际机器学习任务中,处理的数据通常是高维向量(如文本嵌入或图片像素矩阵)。然而,无论维度高低,余弦距离的核心计算逻辑保持一致[^2]。因此,在面对更高维度的情况时,只需确保输入向量已标准化并满足等长条件即可正常运行前述函数。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾与春风皆过客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值