**## OpenCV反色处理
环境 vs2019+OpenCV4.5.1**
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
#include <opencv2\imgproc\types_c.h>
#include <opencv2/highgui/highgui_c.h>
using namespace cv;
using namespace std;
int main()
{
Mat src;
//原图
src = imread("d:\\images\\im.jpg", IMREAD_UNCHANGED);
if (src.empty())
{
cout << "can not load image" << endl;
return -1;
}
namedWindow("input", CV_WINDOW_AUTOSIZE);
imshow("input", src);
//单通道图像反色处理(灰度图是单色图像)
Mat gray_src;
cvtColor(src, gray_src, CV_BGR2GRAY);
namedWindow("input", CV_WINDOW_AUTOSIZE);
imshow("output", gray_src);
/*
*
使用 Mat 中的公有成员 cols 和 rows 可以获得图像的调度和宽度,使用属性
channels 表示通道数,若为灰度图像,则值为 1,若为彩色图像,则值为 3。使用
成员函数 at(int y,int x)可以用来访问图像的元素,使用时必须指定数据类型,如
image.at<uchar>(j,i),对于彩色图像,每个像素由红、绿、蓝三通道构成,因此返
回的是一个向量,向量的每一元素为一个 unsigned char 变量,如
image.at<cv::Vec3b>(j,i)[chnnel]=value;
*/
int height = gray_src.rows;
int width = gray_src.cols;
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
int gray = gray_src.at<uchar>(row, col);
gray_src.at<uchar>(row, col) = 255 - gray;
}
}
imshow("反色", gray_src);
//三通道图像的反色
Mat dst;
dst.create(src.size(), src.type());
height = src.rows;
width = src.cols;
//获得通道数
int nc = src.channels();
//b,g,r 三通道
int b;
int g;
int r;
/*for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
b = src.at<Vec3b>(row, col)[0];
g= src.at<Vec3b>(row, col)[1];
r = src.at<Vec3b>(row, col)[2];
//对每个通道都进行反转
dst.at<Vec3b>(row, col)[0] = 255 - b;
dst.at<Vec3b>(row, col)[1] = 255 - g;
dst.at<Vec3b>(row, col)[2] = 255 - r;
}
}*/
//api函数
//bitwise_not(src, dst);
//只保留红色通道的值
/*for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
b = src.at<Vec3b>(row, col)[0];
g = src.at<Vec3b>(row, col)[1];
r = src.at<Vec3b>(row, col)[2];
//这里是将b和g通道
dst.at<Vec3b>(row, col)[0] = 0;
dst.at<Vec3b>(row, col)[1] = 0;
dst.at<Vec3b>(row, col)[2] = r;
}
}
imshow("三通道反色", dst);*/
waitKey(0);
return 0;
}