Distance-Based Background Class Regularization for Open-Set Recognition

用于开放集识别的基于距离的背景类正则化

摘要:

  1. 在开放集识别(OSR)中,分类器应该能够拒绝未知类样本,同时保持强大的封闭集分类性能。为了解决基于预训练的Softmax分类器的OSR问题,以前的研究调查了离线分析,例如,基于距离的样本拒绝,这可以限制已知类数据项的特征空间。由于这类分类器仅基于已知类样本进行训练,因此可以使用背景类正则化(BCR),在训练阶段将背景类数据作为未知类数据的替代物,以提高OSR的性能。
  2. 然而,以前的正则化方法限制了OSR的性能,因为它们将已知类数据归入一个单一的组,然后旨在将它们与异常情况区分开来。
  3. 在本文中,我们提出了一种适用于OSR的新型基于距离的BCR方法,该方法以类的方式限制已知类数据的特征空间,然后使背景类样本位于远离有限的特征空间。我们使用基于距离的分类器,而不是传统的Softmax分类器,它利用线性判别分析的原理。基于用于分类的距离度量,我们设计了一个新的正则化损失函数,可以在保持稳健的封闭集分类性能的同时,对已知类和背景类样本进行对比。
  4. 通过广泛的实验,我们表明,所提出的方法以简单的推理过程提供了稳健的OSR结果。

引言:

在机器学习(ML)中,分类算法已经取得了巨大的成功。通过卷积神经网络的最新进展,其分类性能已经超过了人类水平的图像分类性能(He等人,2015)。然而,这种算法通常是在封闭集假设下开发的,即假设每个测试样本的类别总是属于预先定义的类别集之一。尽管这一传统假设在现实世界的应用中很容易被违反(分类器可能面临未知类的数据),但传统的算法很可能迫使未知类的样本被归入已知类中的一个。为了解决这个问题,开放集识别(OSR)问题(Scheirer等人,2013)旨在将未知类样本正确地分类为 "未知",将已知类样本分类为已知类之一。根据OSR的定义(Scheirer等人,2013),需要适当限制已知类数据的特征空间。为了满足这一要求,各种基于传统ML模型的OSR方法被开发出来。

此前,Scheirer等人(2014)校准了支持向量机(SVM)的决策分数。基于 "如果对已知类别的数据样本进行准确建模,则可以拒绝大量未知类别的数据样本 "这一直觉,Jain等人(2014)提出了PI-SVM,利用位于SVMs决策边界附近的已知类别样本进行统计建模。之后,Junior等人(2016)试图根据最近邻居的原则´解决OSR问题。考虑到数据的分布信息,Rudd等人(2018)通过利用边际分布的概念提出了极值机。由于深度神经网络(DNNs)通过学习数据的高层表征而具有强大的分类性能,DNNs的OSR方法受到了极大的关注。基于传统的基于ML的OSR方法所使用的理论基础,Bendale & Boult(2016)提出了第一个用于DNN的OSR策略,称为Openmax,它校准了预训练的Softmax分类器的输出对数值。为了改进Openmax,Yoshihashi等人(2019年)提出了分类-重建学习,以做出稳健的潜在特征向量。之后,Oza & Patel(2019)提出利用类条件的自动编码器,并使用其重建误差来评估每个输入样本。Sun等人(2020)采用了几个类条件变异自动编码器进行生成式建模。尽管以前使用判别模型的OSR方法将离线分析应用于预先训练好的Softmax分类器,或采用复杂的DNN模型,但由于分类器的训练仅基于已知类别的样本,所以它们的性能有限。

为了缓解这个问题,人们可以使用背景类正则化(BCR)来实现强大的经验结果。然而,以前的BCR方法(Dhamija等人,2018;Hendrycks等人,2019;Liu等人,2020)不足以妥善解决OSR问题。为了设计一个有效的开放集分类器,克服之前的局限性,我们提出了一种适合OSR的新型BCR方法,该方法使用基于距离的分类器和新型损失函数进行正则化。我们将在下一节提供详细的描述。

OSR问题解决的是分类设置,可以面对训练期间未见过的类别的测试样本。在这种情况下,开放集分类器的目的是对已知类样本进行正确分类,同时拒绝未知类样本。与OSR类似的问题是分布外(OOD)检测(Hendrycks & Gimpel, 2017),其目的通常是拒绝远离训练数据分布的数据项。在之前的OOD检测研究中(Hendrycks & Gimpel, 2017; Liang et al., 2018; Lee et al., 2018a;b),OOD样本往往来自其他数据集甚至是噪声图像。在本文中,我们旨在拒绝那些类别未知但与训练数据相关的测试数据,这缩小了传统OOD检测任务的范围。此前,Scheirer等人(2013)基于开放空间风险RO的概念,引入了OSR问题的正式定义,RO是对正标记的球SV和位于远离SV的开放空间O的相对测量。由于在O中标记任何数据项都会产生开放空间风险,因此很简单,如果一个分类器接受无限宽区域的数据,即其开放空间风险是无界的(RO=1),则该分类器不能成为OSR问题的解决方案。该定义意味着解决OSR问题的基本要求是:1)约束开放空间风险;2)理想地平衡它与经验风险,以保持低分类错误率。与传统的封闭集分类器不同,开放集分类器需要限制已知类数据的空间以约束其开放空间风险。为了确保约束开放空间风险,Scheirer等人(2014)提出制定紧凑消减概率(CAP)模型。CAP模型的原理是,如果一个分类器的支持区域从训练数据中向各个方向衰减,对该区域进行阈值处理将约束该分类器的开放空间风险(Boult等人,2019)。如图1所描述的,该图比较了传统的封闭集和开放集分类问题,适当地建立类的CAP模型是满足OSR两个基本要求的有效策略。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值