# 定义AlexNet模型
model = Sequential()
model.add(Conv2D(96, kernel_size=(11, 11), strides=(4, 4), activation='relu', input_shape=(28, 28, 1)))
model.add(LRN2D())
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Conv2D(256, kernel_size=(5, 5), activation='relu', padding='same'))
model.add(LRN2D())
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Conv2D(384, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(Conv2D(384, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
该文描述了如何定义一个基于AlexNet架构的深度学习模型,包括卷积层(Conv2D)、局部响应归一化(LRN2D)、最大池化层(MaxPooling2D)、全连接层(Dense)以及Dropout层,用于图像分类任务,激活函数主要使用ReLU,最后一层为Softmax用于多分类。
3678

被折叠的 条评论
为什么被折叠?



