开放集识别(基于生成模型)

本文概述了多种基于生成模型的开放集识别方法,如OpenGAN、AMPF、ASG等,强调了生成未知类数据以增强模型对未知输入的鲁棒性。这些方法通常涉及生成与已知类相似但属于未知类的样本,通过增加模型对异常的辨别能力,提升开放集识别的性能。实验表明,这些方法在多个数据集上取得了一定的提升,但对生成样本的真实性和有效性仍存在疑问和讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们列举了一些重要的基于生成方式的开放集识别方法,仅供参考

1.OpenGAN: Open-Set Recognition via Open Data Generation(OpenGAN: Open-Set Recognition via Open Data Generation_appron的博客-CSDN博客)  

1.1方法(真实挑选+生成常规未知类,分类器仅进行封闭训练)

1.2贡献

  • 生成的目标是多分类特征,判别的源也是多分类的特征。(降低了生成难度,似乎非首创)
  • 利用真实的离群数据挑选最佳的GAN鉴别器(在训练的某个阶段停止,本文核心贡献,但验证和测试在同一个数据集,未知还是未知吗?)。
  • 可用敌对合成的“假”数据来扩充可用的真实开集示例集。(同时利用生成和真实的异常暴露,似乎非首创)

1.3结果与分析:

  • 数据集包括MNIST[38]、SVHN[39]、CIFAR,实验设置包括同数据集、跨数据集、像素级,网络架构ResNet18+HRNet,指标包括AUROC、F1-Unknown,实验结果提升较大
  • 可以发现验证集中的未知类,对其他未知类的检测能力有证据吗?

2.Adversarial Motorial Prototype Framework for Open Set Recognition(Adversarial Motorial Prototype Framework for Open Set Recognition_appron的博客-CSDN博客

2.1方法(生成分布外与分布内的未知类,分类器指明目标)

(J1和J2)(G1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值