我们列举了一些重要的基于生成方式的开放集识别方法,仅供参考
1.OpenGAN: Open-Set Recognition via Open Data Generation(OpenGAN: Open-Set Recognition via Open Data Generation_appron的博客-CSDN博客)
1.1方法(真实挑选+生成常规未知类,分类器仅进行封闭训练)
1.2贡献
- 生成的目标是多分类特征,判别的源也是多分类的特征。(降低了生成难度,似乎非首创)
- 利用真实的离群数据挑选最佳的GAN鉴别器(在训练的某个阶段停止,本文核心贡献,但验证和测试在同一个数据集,未知还是未知吗?)。
- 可用敌对合成的“假”数据来扩充可用的真实开集示例集。(同时利用生成和真实的异常暴露,似乎非首创)
1.3结果与分析:
- 数据集包括MNIST[38]、SVHN[39]、CIFAR,实验设置包括同数据集、跨数据集、像素级,网络架构ResNet18+HRNet,指标包括AUROC、F1-Unknown,实验结果提升较大
- 可以发现验证集中的未知类,对其他未知类的检测能力有证据吗?
2.Adversarial Motorial Prototype Framework for Open Set Recognition(Adversarial Motorial Prototype Framework for Open Set Recognition_appron的博客-CSDN博客)
2.1方法(生成分布外与分布内的未知类,分类器指明目标)
(J1和J2)
(G1)