Le-Net
Lenet也称Lenet-5,共5个隐藏层(不考虑磁化层),网络结构为:
- Conv(5*5,6,1)+Conv(5*5,16,1)+Conv(5*5,120,1)+FC(84)+FC(10)
- 或Conv(5*5,6,1)+Conv(5*5,16)+FC(120)+FC(84)+FC(10)
AlexNet
提出背景:解决Lenet识别大尺寸图片进行的效果不尽人意的问题
与LeNet相比,AlexNet具有更深的网络结构,共8个隐藏层,包含5层卷积和3层全连接,网络结构为:
- Conv(11*11,96,2)&#
本文介绍了深度学习中的几个里程碑模型,包括Le-Net、AlexNet、VggNet、GoogLeNet和ResNet。AlexNet通过数据增强、ReLU激活、GPU训练等解决了Le-Net在大图识别上的问题;VggNet通过堆叠小尺寸卷积层加深网络;GoogLeNet引入Inception结构降低计算复杂度;ResNet利用残差连接实现更深的网络结构,有效解决了梯度消失问题。
最低0.47元/天 解锁文章
2205

被折叠的 条评论
为什么被折叠?



